
RAY.) &-TR-88-296 I

Fin;.' Technical Report
,r 19,39

i A28 3329

F'ULT TOLERANT SOFTWARE
TECHNOLOGY FOR DISTRIBUTED
COMPUTER SYSTEMS

Georgia Institute of Technology

Richard J. LeBlanc

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. D TIC

MAY 26 198 fM 'lDB

ROME AIR DEVELOPMENT CENTER H
Air Force Systems Command

Gritfiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC TR-88-296 has been reviewed and is approved for publication.

APPROVED:

RICHARD A. METZGER
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR., Technical Director
Directorate of Communications

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC
(COTD) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

UNCLASSIFIED
SECURITY CLASSIFICTION OF THIS PAME

REPOT DCUMNTATON AGEForm Approved
REPOR DOCMENTTIONPAGEOMB No. 0704-0188

1 tl P i9NIYCASFCTO b. RESTRICTIVE MARKINGS
~JK ,ED N/A

2&. SEURITY CLASSIFICATiON AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release; distribution

21kpACLASIFICATION / DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-88-296

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Georgia Institute of Technology fIPal) Rome Air Development Center(COTD)

6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, Stott, and ZIP Code)
Atlanta
Fulton County GA 30332-0420 Griffiss AFB NY 13441-5700

g. NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Rome Air Development Center COTD F30602-86-C-0032
ME. ADDRESS (CIty, State, and ZIP Cod*) 10. SOURCE OF FUNDING NUMBERS

PROGRAM POMC ~TASK IWORK UNIT
GrfisABN 34-70IiWftlI NO0. IN?3. NO IACCESSION NO.

158 21 7
11. TITLE (Incld security Cassification)

FAULT TOLERANT SOFTWARE FOR DISTRIBUTED COMPUTER SYSTEMS
12. PERSONAL AUTHOR(S)
Richard J. LeBlanc

lfIEOF REPORT 13b. TIME 0 JERED 14. DATE OF REPORT (Year, Month,O0ay) 1S. PAGE COUNT

19. ASRC(CoAti E o$. SUBJECT TERM necenai'y ond Ideti eesay n ify by block number)

2 This report summarizes the work performed over a two-year period by the CLOUDS project at GeorgiaInstitute of Technology to address the methodologies for fault tolerant software design and implemen-
tation in an object-oriented distributed operating system. The major research results are contained intwo companion guide book reports resulting from this effort enilio9Ato Based Programming forEmbedded Systemsm'and 9uPrograrmmjng Techniques for Resilience and Availability."e1 The information inthis report provides an overview of the major aspects of the system and identifies the major issueswhich are considered in detail in the guidebooks.

20. DISTR13UTION /AVAILAILITY OF AST'.ACT 12LABTR C RITY CLASSIFICATION
13UNCLASSIFIEDIUNLIMITED C3 SAME AS RPT. 03 DTIC USERS lUNC LA5SIED

22a. N4AME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Incude Area Code) I22c. OFFICE SYMBOL
RICHARD A. METZGER (315) 330-2066 RADC(COTD)

00 Form 1473, JUN 86 Pre vioui editons are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

1. Summary of Project

This report documents the results of the project entitled "Fault Tolerant Software Technology for
Distributed Computing Systems," a two year effort performed at Georgia Institute of Technology as
part of the Clouds Project. The Clouds Project is building an object-oriented distributed operating sys-
tem and studying how such a system supports the development of distributed applications, with a partic-
ular concern for highly available, fault-tolerant applications. The Clouds kernel supports objects as the
fundamental encapsulation of data. Objects define permanent virtual address spaces and may allow
access to and modification of their data through arbitrary, programmer-defined operations. ObJecms
operations are invoked using capabilities which allow system-wide access to an object via the kernel-
based capability interpretation mechanism. The kernel also provides atomic actions (corresponding
roughly to the database notion of atomic transactions) in order to support the construction of reliable
applications.

The design philosophy of the Clouds system is that the fundamental tools needed for the develop-
ment of distributed applications are (1) a mechanism for distributed data access and (2) support for
dealing with component failures. The object mechanism described above is designed expressly to sup-
port location-transparent data sharing. Processes interact not by passing messages to one another, but
rather by accessing a shared object. This approach allows the processes to directly share the common
part of their collective state rather than to attempt to communicate state changes directly to one another
via messages.

Since the state of a computation is captured by the set of objects it access and modifies, it is
important that component failures do not lead to inconsistent states in which some but not all of a list
of related changes to objects have been completed. The atomic action mechanism provides such an
assurance. An atomic action can be defined to consist of any number of operation invocations on a set
of objects.

The project consisted of two research tasks. The goal of each task was the production of a techn-
ical guidebook outlining and analyzing tools and techniques for the development of fault tolerant
software for distributed computing systems.

The title of Task 1 was "Programming Techniques for Resilience and Availability." The work of
this task focused heavily on problems related to replication, since replication is the key ingredient of
any scheme to provide highly available applications or services. Issues discussed in the guidebook
include defining resilient data areas, naming replicas, locking in the presence of replicas, state propaga-
tion to replicas when actions commit, and fault tolerant action execution. Much of the discussion is in
terms of the Aeolus language which we use to program objects for the Clouds system.

The title of Task 2 was "Action-Based Programming for Embedded Systems." The major issue
addressed by this task is the seeming incompatibility of the idea of large-grained atomic actions with
the irreversible operations frequently performed by embedded systems. Substantial consideration is
given to the problem of preserving information about irreversible operations so that recovery mechan-
isms invoked by action aborts (or exceptions) can produce a meaningful system state, though not the
same state as would be produced by a pure atomic action mechanism.

1.1. Applicability to Existing Systems

The resilience work in Task I focuses on features in the Aeolus language designed to support the
definition of resilient objects. Its major point of general applicability is in how it relates to the more
general concept of checkpointing. It illustrates the value and power of allowing a programmer to
specify what must be checkpointed and how it is to be recovered.

The availability work in Task 1 is again somewhat specialized for the Clouds environment. How-
ever, it should be viewed as a model for the importance of allowing a mixture of contribution by the
system and the programmer. The basic idea of the solution presented is that the system provides a
basic framework and supporting mechanisms for availability while the programmer contributes policy
implementations that are customized for a particular application.

2

The embedded system work of Task 2 has a more direct general application. It generalizes the
atomicity concept by integrating forward and backward recovery, thus removing the incompatibility
between the (generalized) atomicity concept and irreversible operations.

A common thread through all of the results is the importance of providing ways for a programmer
to use application semantics in developing customized recovery, resilience and availability solutions,
while at the same time providing the most powerful supporting mechanisms possible.

2. Programming Techniques for Resilience and Availability

In keeping with the title of this task, the most significant results presented in the Task I guide-
book concern language features for resilient types and availability specifications. In keeping with our
concern for providing powerful supporting mechanisms, it is significant to note that both of these
features are declarative. Our intent is to allow a programmer, as far as possible, to specify resilience
and availability requirements, leaving detail work to a compiler and runtime library.

Resilience and availability are crucial to our basic goal: fault tolerant software for distributed
computing systems. By resilience we mean the survivability and consistency of data despite crashes
and other detectable faults. We define availability to mean accessibility of data despite network parti-
tions or failures of some sites in a distributed system. Together with a mechanism that ensures forward
progress (continued execution of jobs despite failures), these properties provide fault tolerance.

Resilient types are a mechanism for specifying customized update and recovery mechanisms in an
object designed to be modified by atomic actions. Such modifications imply that multiple versions of
the object must be maintained while uncompleted actions exist. Use of customized operations based on
object semantics in this context allows far more efficient use of atomic actions than would be possible
if a generalized recovery scheme were used. In the later case, a copy of the entire data space of the
object would have to be made for each active version of the object. Use of the resilient type technique
allows all versions to be represented within a single address space.

The features for availability support presented in the guidebook are collectively known as distri-
buted locking. They deal with support for managing replicas of an object in order to increase the availa-
bility of the service provided by the object. Using distributed locking, a programmer first writes a
definition and implementation of an object as if only a single instance of the object was going to exist.
(Resilient types might be used in the object implementation.) The programmer then writes an availabil-
ity specification for the object, specifying the number of replicas, the the replication control policies to
be used, and the relative availabilities of the modes of each lock type specified in the object The most
significant aspect of this specification is the replication control policy part. It allows the programmer to
designate how concurrency control and consistency maintenance are to be performed, considering, as
usual, object semantics. The mechanisms designated may be either taken from system libraries or sup-
plied by the programmer.

3. Action-Based Programming for Embedded Systems
The work performed for this task was based on the idea that embedded systems include irreversi-

ble operations, that is, operations that interact with the physical environment. The performance of such
operations appears incompatible with the concept of an atomic action, since atomic actions rely on roll-
back (or more generally, backward recovery) to restore their initial state in the case of a failure. The
work we have done generalizes the atomicity concept by integrating forward and backward recovery,
thus removing the incompatibility between the (generalized) atomicity concept and irreversible opera-
tions.

The solutions developed involve software recovery techniques presented within the framework of
action-based programming. The recovery techniques described in the handbook represent a synthesis of
exception handling and action-based programming. Exception handlers are associated with individual
units of work (actions) rather than with procedures or objects. The exception handlers have access to
system services not otherwise accessible in a program. These services are used to achieve appropriate
forward recovery. To emphasize the nature of these enhancements, exception handlers are termed

3

recovery handlers.
A more general unanticipated result of our work is that the approach we present can be used not

only to increase the fault tolerance of a software system, but also to simplify management and mainte-
nance of the system. For example, if actions are robust, it will be possible to bring an individual
machine down for maintenance without extensive coordination. A robust action will abort when the
site goes down and either restart when it comes up or make alternative arrangement in the interim. Our
approach can also be used to support software maintenance and upgrades. We describe how recovery
handlers can remap the code and data windows of the associated action during recovery. This mechan-
ism provides on-line access to backup versions of software and can be used to transfer control from the
old version to a new version of the code for an action.

4. Appendices

The following papers based on and related to work performed during the course of this project are
included as appendices:

"Fault Tolerant Computing in Object Based Distributed Systems" by Mustaque Ahamad, Partha Dasg-
upta, Richard J. LeBlanc, and C. Thomas Wilkes. From the Proceedings of the Sixth Symposium on
Reliability in Distributed Software and Database Systems (March, 1987).

"Distributed Locking: A Mechanism for Constructing Highly Available Objects" by C. Thomas Wilkes
and Richard 5. LeBlanc. An abbreviated version of this paper will appear in the Proceedings of the
Seventh Symposium on Reliability in Distributed Systems (October, 1988).

"The Clouds Distributed Operating System" by Partha Dasgupta, Richard J. LeBlanc and William F.
Appelbe. From the Proceedings of the 8th International Conference on Distributed Computing Systems.

Accession For

NTIS MuhlI
DTIC TA B
U'aaounaod
Justifieatin.

I-P Distribution/
Avallability Codes

~ 7 - Avail and/or
'Dist Specia

Appendix A

A-I

Fault Tolerant Computing in
Object Based Distributed Operating Systems

Mustaque Ahamad, Partha Dasgupta,
Richard J. LeBlanc, & C. Thomas Wilkes

School of Information and Computer Science
Georgia Institute of Technology, Atlanta, GA 30332-0280

Abstract

Replication of data has been used for enhancing its availability in the presence of failures in
distributed systems. Data can be replicated with greater ease than generalized objects. We review
some of the techniques used to replicate objects for resilience in distributed operating systems.

We discuss the problems associated with the replication of objects and present a scheme of
replicated actions and replicated objects, using a paradigm we call PETs (parallel execution
threads). The PET scheme not only exploits the high availability of replicated objects but also
tolerates site failures that happen while an action is executing. We show how this scheme can be
implemented in a distributed object based system, and use the Clouds operating sys:em as an
example testbed.

1. Introduction

A distributed system consists of many computers which are connected via communication links.
The increased number of components (i.e., machines, devices and communication links) increases
the chances of a failure in the system (or decreases the mean time between failures). Guarding
against the effects of failures is one of the key issues in distributed computing. In this paper, we
discuss approaches that provide forward progress despite the failure of some components in a
distributed computing system.

t This research was partially supported by NASA under contract number NAG-1-430 and by NSF under contract
number DCS-84-05020.

Authors' Address:
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332

Phone:
(404) 894 2572

Electronic Address:
(mustaq,partha,rich,wilkes} @ Gatech.edu
(akgua~Alegra,hplabsjhnp4)!

gatech! (mustaq,partharich,wilkes)

A-2

Our model of the distributed system is a prototype under development at Georgia Tech named
Clouds. Clouds is a decentralized operating system providing location transparency, transactions,
and robustness in an object based environment. In this paper, we present a review of known
techniques for fault tolerance using replication. Then we discuss the salient features and
architecture of Clouds. Finally, we present mechanisms needed for replication, probes, and parallel
action threads for providing fault tolerant computing in Clouds. We discuss the pitfalls and the
solutions to the problem of providing replication of objects having a general structure, which is
more complex to achieve than replication of flat data (data that is accessed through read and write
operations, such as files).

2. Replication Techniques for Database Systems

The use of replication to enhance availability was first studied in the area of distributed database
systems, and was later adopt-d in the area of distributed operating systems.

2.1 Concurrency Control of Replicated Data

One of the main issues in handling of replicated data in database systems is to maintain
consistency. This is achieved by concurrency control protocols. The concurrency control and
recovery techniques for replicated data are summarized by Wright.1w rigs"I He classifies these
methods as conservative (pessimistic, blocking) and optimistic (non-blocking).

Conservative Concurrency Control Methods Examples of conservative methods are voting
schemes,[Giff 79 1.Th79sI primary copy methods,[s tI1 79al and token-passing schemes. LI-A78aI These
methods ensure consistency of the replicated data by requiring access to a special copy or a set of
copies of the data. Primary copy methods allow access to a copy during a network partition only if
the partition possesses the designated primary copy of the data. Token-passing schemes are an
extension of primary copy methods. A token is passed among sites holding a copy of data, and the
copy at the site currently holding the token is considered the primary copy. In the voting schemes,
each copy of the data is assigned a (possibly different) number of votes and a partition possessing a
majority of the votes for that object may access it. The conservative schemes are called blocking
since the data is not available at a site in a partition which does not possess the primary copy (or
token or majority of votes). Thus, the access must block until the partition is ended, even if a copy
of the data is available in the partition. Indeed, under these schemes it is possible that no partition
may have access to the data.

Optimistic Concurrency Control Methods The optimistic methods do not seek to ensure global
consistency of replicated data during partitions.Davila.Dvig2a1 Thus, accesses are not blocked if a
replica of the data is available in the partition in question. Rather, inconsistencies in the replicas
are resolved by use of backouts or compensatory actions during a merge process, once the partition
is ended. It is assumed that the number of such inconsistencies will be small (hence, optimistic).
However, tradeoffs may be made between consistency and availability. For example, the Data-
Patch tool for designing replicated databases[BhuS. ,Ga83&J assumes that, rather than strict
consistency, a reasonable view of the database should be maintained to enhance availability.

3. Replication in Operating Systems

Research in database systems has been limited to consideration of flat data, and as we show
later, the generalization to replication of objects having arbitrary structure leads to many problems.

A-3

These include the mechanisms used for the copying of state among replicas and having to deal with
multiple instances of a single operation invocation (or a procedure call). The distributed operating
systems that provide replication of objects or abstract data types include the Eden system developed
at the University of Washington, the ISIS system at Cornell, and the Circus replicated call facility
built on top of Unix. The replication of abstract data types has also been studied by Herlihy.

Eden The Eden systeml--nS 3aJ has been operational at the University of Washington since April
1983. Support for replication in the Eden system has been studied at both the kernel level and the
object level. The kernel level implementation of replication support is called the Replect approach
(for replicated Ejects, or Eden objects), while the object level implementation is called R2D2 (for
Replicated Resource Distributed Database). Both implementations use quorum consensus for
concurrency control.

ISIS The ISIS system developed at Cornell[Bi=848.Birs5,) supports k-resilient objects (operations on
such an object survives up to k site failures) by means of checkpoints. This system provides both
availability and forward progress; that is, even after up to k site failures, enough information is
available at the remaining sites possessing the object replicas that work started at the failed sites can
continue at these remaining sites. This is accomplished through a coordinator-cohort scheme,
where a transaction executes at the coordinator site and the updates it performs on any objects are
propagated to the cohort replicas, one replica acts as master during a transaction to coordinate
updates at the other slave replicas (cohorts). The choice of which replica acts as coordinator may
differ from transaction to transaction. The object state is copied from the coordinator to the
cohorts. We call this method of state propagation cloning. This operation has been described as
propagating a checkpoint of the entire coordinator,['B"8 1 or, in a more recent paper, as propagating
the most recent version in a version stack.[Bi n n85 la

In ISIS, a transaction is not aborted when a machine on which its coordinator is running fails
(transactions are usually aborted only when a deadlock situation arises). Rather, the transaction is
resumed at a cohort from the latest checkpoint. This cohort becomes the new coordinator.
Operations which the coordinator had executed after the htest check-point rnok place must be re-
executed at the new coordinator.

Circus Cooper has investigated a replicated procedure call mechanism called Circus which was
implemented in UNIX.ICooOsaI In Cooper's scheme, although replicas of a module have no
knowledge of each other, they are bound (via run-time support) into a server called a troupe which
may be accessed by clients. (The client knows that the server is replicated.) A module in Circus
may have arbitrary structure, containing references to other modules. However, the module is
currently required to be deterministic. His scheme uses idemexecution (operation execution at each
replica) for state propagation. When a troupe accesses an external troupe, results of operations on
modules of the server troupe are retained by the callees. These results are associated with call
sequence numbers, and are returned when subsequent calls by the replicas of the caller troupe with
the same sequence numbers are encountered. This avoids the inconsistencies that can be caused by
multiple executions of the same call.

Herlihy's Work Herlihy(H-d84al uses semantic knowledge of arbitrary abstract data types (objects) to
enhance the quorum consensus concurrency control method. Analysis or the algebraic structure of
data types is used in the choice of appropriate intersections of voting quorums.

A-4

4. Basics of the Clouds Operating System

Clouds is a distributed operating system that supports objects and actions. The rest of this paper
deals with a set of techniques that implement generalized replicated objects in the framework of the
Clouds operating system. We discuss the salient features of Clouds in this section. For a more
detailed description, the reader is referred to [Dasg85a].

Figure 1 shows the hardware configuration of the Clouds prototype. The Clouds operating
system provides support for the following facilities:

Distribution Clouds has been designed with loosely coupled distribution in mind. The hardware
architecture consists of a set of general purpose machines connected by an Ethernet. The software
architecture is a set of cooperating sub-kernels, which implement a monolithic view of the
distributed system.

Object Based All system components, services, user data, and code are encapsulated in objects.
The object structure is shown in figure 2. The Clouds universe is a set of objects (and nothing but
objects). An object is a permanent entity, occupying its own virtual address space. Processes can
weave in and out of objects through entry points defined in the object space. The only way to access
data in an object is to use a process that executes the code in the object via an entry point.

Location Independence The Clouds objects reside in a flat, system-wide name space (the
system name space is flat, the user name space need not be). There are no machine boundaries. Any
process that has access to an object can invoke an operation defined by the object. This creates a
unified view of the system as one large computing environment consisting of objects, even though
each site in the system maintains a high degree of autonomy.

Synchronization Objects are sharable, that is several processes can invoke the object
concurrently. This can pose synchronization problems. Clouds implements an automatic as well as
custom synchronization support for concurrent access to objects. (Automatic synchronization uses
two-phase locking, using read and write locks. Custom synchronization is the responsibility of the
object programmer.)

Actions To prevent inconsistency in the data stored in objects, Clouds supports top-level and
nested actions. Two-phase commit it used to ensure that all objects touched by an action are either
updated successfully on a commit or are rolled back in case of explicit aborts or failures. The
action management system tracks the progress of actions and maintains information about objects
touched by the action and its subactions. The action management system uses the mechanisms
provided by the recovery management component of the Clouds kernel, for performing the commit
or abort operations when a action terminates or fails. Recovery management is implemented as part
of the storage manager.

Clouds is designed to support a high degree of fault-tolerance. The mechanisms that provide
this support are the topic of discussion in the rest of this paper. The following section discusses the
approaches.

5. Fault Tolerance
One of the basic goals that motivated the design of Clouds was achieving fault tolerance.

Several of the mechanisms currently supported by Clouds are geared to this end. Thus, we believe it

A-5

is an ideal environment for building a fault tolerant system. We review some of the low level details
that provide such support.

1. The object invocation strategy was designed for fault tolerant systems. When a process
invokes an object (using its capability), and the object is not available locally, a global
search-and-invoke is initiated. t 5spa,.a, This will successfully invoke the object if it is
reachable. Failure of any site not containing the object will not affect the invocation. The
invocation will also find the object, if reachable, irrespective of where it is located, even
if it was moved around in the recent past. Migration, failure, creation and deletion of
objects etc. do not adversely affect the invocation mechanism.

2. All disk systems are dual-ported (or if possible, multi-ported). If a site fails, the disks
belonging to the failed site are re-assigned to other working sites. Due to the location
search-and-invoke mechanism, this switch can be done on the fly, and the objects that
were made inaccessible due to the failure become accessible.

3. Users are not hard-wired to the sites, but are attached to logical sites through a front-end
Ethernet (multiple Ethernets may be used for higher reliability, without changing our
algorithms or architecture). If the site the user is attached to fails, some other site takes
over and the user still has access to the system.

4. The system maintains consistency of all data (objects) in the system by using the atomic
properties of actions (or transactions). Clouds implements nested atomic actions. This is
the function of the action management system, which uses the synchronization and
recovery provided at the kernel level. The commit and abort primitives are implemented
in the kernel, [Pin"(* and the action manager implements the policies. Nested actions have
semantics similar to that defined in[o-9s8aJ and are used to firewall failed subactions.

All these mechanisms provide a certain degree of fault tolerance, that is, the system is not
affected adversely by failures. Some actions are aborted, but the system as a whole continues
functioning in spite of site failures. Though dual porting of disks does simulate some replication
(that is, if a site fails, the data stored at the site is still available through an alternate path), this
mechanism is not completely general because it can not tolerate media crashes. Also, actions
executing on the failed site are forced to abort.

The action management scheme provides backward recovery and ensures that all data in the
system remain consistent in spite of failures. However, this does not guarantee forward progress, as
failures cause actions to abort. Fault tolera,,e should imply some guarantee of forward progress,
that is an action should be able to continue in spite of a certain number of failures. We now discuss
strategies that guarantee forward progress despite failures.

5.1 Primary/Backup Actions and Probes

One of the methods that allows fault tolerant behavior is the use of the primary/backup
paradigm for actions. This paradigm is also used for fault-tolerant scheduler, monitor, and oth'r
subsystems requiring some degree of reliability.McKeg4 .t DuSgI In this scheme, a fault-tolerant action
is really two actions, one being the primary, which does the work, and the other being a backup,
which is a hot standby. The primary and backup use probes to ensure both are up. If the primary
fails, the backup takes over (and creates a new backup). If the backup fails, the primary creates a
new backup.

A-6

The primary/backup system can be implemented using the Clouds probe management system.
In Clouds, a probe can be sent from a process to another process or an object. The probe causes a
quick return of status information of the recipient. Probes work synchronously, and use high
priority messages and non-blocking routines so that the response time is practically guaranteed.
This allows use of timeouts to check for reachability or liveness.

If a particular object is unavailable due to some failed component (even though we have dual
ported disks), both the primary and the backup actions are doomed to fail. Thus the primary/backup
scheme has to be augmented with increased availability of objects. Replication is the well known
technique for achieving higher availability of data.

5.2 Replication of Objects

Maintaining consistency of replicated data (i.e., files) is simpler than maintaining consistency of
replicated objects because only the read and write operations are provided to access data. Objects,
on the other hand, are accessed through operations defined in the objects, which in turn can call
operations defined in other objects. This gives rise to the following problems:

1. Due to non-determinism, the same operation invoked on two identical copies of an object
may produce different results. Thus non-determinism cannot be handled in the Circus
system, because it uses idemexecution.

2. Due to the nested nature of the objects, two copies of a replicated object may make a call
to a non-replicated object, causing two calls where there should have been one. This can
happen in the ISIS system when the coordinator crashes and some other site becomes the
coordinator. In Circus this happens when the caller object is replicated.

3. Maintaining varying degrees of replication of objects produces a fan-in fan-out problem
that is not easy to handle. Also, the naming scheme for replicated objects presents a
non-trivial problem.

The generality of the abstract object structure supported by Clouds poses problems for
replication methods which are not presented by objects of lesser generality. The problem lies in the
possibility of the arbitrarily complex logical nesting of Clouds objects. Although Clouds objects
may not be physically nested (that is, one object may not physically contain another object), an
object may contain a capability to another object. If object A creates another object B, and retains
sole access to B's capability (by refraining from passing the capability to other objects and also not
registering the capability with the object filing system [OFS]), we say that object B is internal to
object A. The internal object B may be regarded as being logically nested in object A. If, on the
other hand, object A passes B's capability to some object not internal to A, or if A registers B's
capability with the OFS, we say that B is external to A. An external object is potentially accessible
to objects that may not be internal to the object's creator.

Problems arise with replication schemes when internal and external objects are mixed together
in the same structure, i.e., when an object may contain capabilities to both internal and exten).
objects. These problems are associated with the method which is used to propagate the state of a
replicated object among its replicas. External objects cause problems when idemexecution is used
to propagate state changes among replicas. If the replicated object invokes an operation on an
external object (e.g., a print queue server), then under idemexecution, that operation will be
executed by each replica. If the operation being performed on the external object is not idempotent,

A-7

this can cause serious problems (e.g., multiple submissions of a job to the print queue). Also,
trouble may arise when idemexecution is used if the operation on the external object is non-
deterministic (for instance, random number generation, or disk block allocation among multiple
concurrent processes).

On the other hand, internal objects cause problems when cloning is used to propagate state. For
example, assume that each replica of an object creates a set of internal objects. Then, when an
operation is performed on one of the replicas, its state under cloning is copied to each of the other
replicas. However, since the capabilities to the internal objects of the replicas are contained in their
states, each replica now contains capabilities to the internal objects of the replica at which the
operation was actually executed. Thus, the information about the internal objects of the other
replicas is lost.

6. Replication Mechanisms

6.1 Replicated Actions

We have developed a scheme called replicated actions. Each replicated action runs as a nested
action and has its own thread of execution. Each thread of control is called a Parallel Execution
Thread or PET. The degree of the replicated action is the number of PETs that comprise the action.
The degree is determined statically at the the time the top level action is created. If all objects
touched by the action are replicated k times and the degree of the replicated action is also k, we can
have each PET executing on a different copy of the object.

Briefly, the PET scheme sets up several parallel, independent actions, performing the same task,
using a possibly different set of replicas of the objects in question. These actions follow different
execution paths, on different sites, but only one of them is allowed to commit. The scheme is
depicted in Figure 3, and its implementation details are presented in Section 6.4.

The PET scheme for replicated objects has several advantages. Firstly, up to k-1 transient
failures (in a PET scheme with k threads), are automatically handled because the remaining PETs
will commit the action. This contrasts with the ISIS scheme in which one of the sites having a
replica has to detect the failure of the coordinator and assume responsibility for the execution of the
action. However it is possible for an action in ISIS to commit while all the PETs may abort in our
scheme. The possibility of this happening is considerably reduced as the degree of the PETs are
increased. Thus this scheme presents a trade off between computation and replication (overhead)
and the degree of fault tolerance.

A replica of an object that is replicated k times can receive multiple calls (as in ISIS and Circus)
when the PET degree is more than k. Thus a replica has to retain results to avoid executing the
same call operation again. However a caller will not receive multiple results as in Circus and we do
not have to collate the returned results. Also since only a single PET is allowed to commit, cloning
is used for state copying and non-deterministic operations do not cause inconsistent state in the
replicas. The problem of internal (or nested) objects is solved by a modification of the capability
(naming) scheme, which is described below.

6.2 Naming Replicated Objects

Replicated objects and actions provide support for guaranteeing forward progress when system
components fail. This introduces the problem of naming replicated objects. In Clouds, the system

A-8

uses a capability based naming scheme. A capability is a system name which uniquely identifies
one object in the distributed system. Under this scheme, a k-replicated object is named by k
different capabilities. This makes naming considerably more difficult, and since capabilities are
stored within an object, state copying via cloning causes the problems described earlier.

To solve this we propose a minor modification to the capability scheme. When replication is
supported by the kernel, at the user level, all copies of the replicated object have the same
capability, and thus one capability refers to a set of objects. A flag in the capability tells the kernel
that the capability points to a set of replicas of the object.

The kernel can then append a copy number to generate unique references to the objects. The
kernel uses the <capability:copy-number> pair to invoke operations. Thus the kernel can choose to
invoke the appropriate copy (or several copies) depending upon the replication algorithms used to
resolve an invocation on a replicated object.

Since all references to the object, as far as the program is concerned, are still made through a
unique capability, which points to all the copies, any naming problems at the user level disappear
(when replication is supported by the kernel). Constructing the <capabiity:copy-number> pair can
be effectively handled at the kernel level, using one of several techniques. (For example, the copy
number 1 is always valid, and this copy, as well as other copies, contain information about the total
number of copies, and thus all copies are accessed by the range 1..max.) This scheme is depicted in
Figure 4.

6.3 Invocation of Replicated Objects

The invocation scheme for replicated objects has to follow the scheme outlined above. The
kernel interface handles invocation as follows. For simplicity, in this section we will assume al he
actions have only one thread of control (1-PET). We will generalize the scheme in the next secti, "i.

A process executing on behalf of an action requests the invocation of an operation defined by.'a
object. The kernel examines the capability and detects whether the object is replicated or not. If it i.
not replicated, the invocation proceeds as a normal Clouds invocation. If the capability points to a
replicated object, the kernel has to choose one of the replicas. If a local copy of the object is
available, the kernel invokes the local copy, else it tries to invoke any one copy, by appending the
copy number and sending ou! an invocation request on the broadcast medium. Typically, the kernel
chooses copy number 1, and if that fails it tries subsequent copies. This sequential searching is not
necessary, as the kernel can use previous history to decide which replica to use.

Once a replica is used for an action, the kernel takes note of that, and stores it with the action id,
and all later invocations are directed to that replica. Thus only a single replica of each replicated
object is used to execute one action. The other replicas are not touched, until the action decides to
commit. When an action commits, the replica it touched is copied to all other replicas. This is done
by copy requests from the action management systems to all the replicas (using the copy number
scheme). All accessible replicas are updated and their version numbers updated. (Note that if the
source object has a copy number lower than a replica, the action has to be aborted.) The versio,,
copying strategy is shown in Figure 5. The version numbers are also u'ed to bring failed sites up-
to-date on startup. On startup, all replicas at the site having version i~unihers less than the highest
version number on the network are reinstated.

A-9

6.4 Handling PETs

The above scheme using 1-PET execution is prone to failures in certain cases. These include
cases where a replica becomes unavailable after it has been invoked, the replica invoked was not
up-to-date and when the site coordinating the action fails.

The N-PET (N>) case decreases the chances of transaction abort due to the transient failures
described in the earlier paragraph. All the separate PETs have different co-ordinating sites and
execute independently.

When the first thread invokes a replicated object, the invocation proceeds as above, that is a
replica is chosen to service the action. The second thread also proceeds similarly, but a different
replica is chosen. The replica choice does not have to be different, but the reliability increases if
they are, so we use a random choice scheme. Note that the same object is chosen (as there is no
choice) if the object is not replicated. Multiple invocations of the same object, due to multiple
threads of control are handled by a collator. The commit phase is however different.

In this scheme, ONLY one PET can be allowed to commit. If more than one PET reaches
commit point, each PET issues a pre-commit, which checks if all the primary copies it touched are
still available. If any thing is not reachable, the PET aborts. Of the remaining PETs any one has to
be chosen to commit (In fact if all of them are allowed to proceed, they will overwrite each others
results and may cause deadlocks during commit time.) The co-ordinating site with the highest site
number wins the match and commits the PET that was associated with the site. The commit causes
the replicas touched by this PET to be copied to all other replicas. The co-ordinating sites that lost
the commit war, do not abort the PETs, but wait for the commit of the winner to be over. If the
commit fails the co-ordinator with the next highest site number attempts the commit. (Note that the
previous commit could have attempted to overwrite the replicas touched by this PET, but the pre-
commit causes a special copy of all the replicas to be retained, and this copy is used for the
commit.)

Transient failures cause failed PETs, but the chances of all PETs failing decreases as the
number of PETs is increased. Also, failures during commit are taken care of, by the other PETs. Of
course it is possible for all the PETs to abort, but the chances of this happening decrease as the
replication degree and the PET degree is increased.

7. Concluding Remarks

There are two major contributions of this research.

1. The object replication scheme is not as straightforward as data replication. The capability
scheme allows reference to a set of objects and the cloning technique ensures correct
execution in spite of generalized and nested objects, as well as non-deterministic objects.

2. Replication enhances availability, that is, actions can be run on a system that has some sites
or data missing due to failures. Handling transient failures are not possible in most replicated
schemes, that is, if an action touches an object, and the object later becomes inaccessible,
before the action commits, the action has to abort. Also, once an action has visited a site, the
failure of that site before the action commits can lead to action failure. The PET scheme
allows the action to proceed, with high probability of success, in a unreliable environment,
where sites fail and restart during the execution time of the action.

A-10

We are currently involved with designing the lower level algorithms and modifying the Clouds
action management scheme to implement the PET method of providing fault tolerance in the
Clouds operating system. This involves the implementation of the collators, the kernel primitives to
choose the appropriate replicas, the mechanisms that ensure distinct PETS choose distinct replicas
and so on. Once the implementation is complete, we will be able to experimentally study the
reliability of this approach.

REFERENCES

[Alme83a] Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe. "The Eden System: A
Technical Review." TECHNICAL REPORT 83-10-05, University of Washington
Department of Computer Science, October 1983.

[Birm84a] Birman, K. P., T. A. Joseph, T. Raeuchle, and A. EI-Abbadi. "Implementing Fault-
Tolerant Distributed Objects." PROCEEDINGS OF THE FOURTH SYMPOSIUM ON
RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Silver Spring, MD
(October 1984): 124-133.

[Birm85a] Birrnan, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES

(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also released as
technical report TR 85-668.)

[Blau82a] Blaustein, B., R. M. Chilenskas, H. Garcia-Molina, D. R. Ries, and T. Allen.
"Partition Recovery Using Semantic Knowledge." (TECHNICAL REPORT),

Computer Corporation of America, Cambridge, MA, November 1982.

[Coop85a] Cooper, E. "Replicated Distributed Programs." PROCEEDINGS OF THE TENTtt
SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS), Orcas Island,
WA (December 1985): 63-78. (Available as Operating Systems Review 19, no. 5.)

[Dasg85a] Dasgupta, P., R. LeBlanc, and E. Spafford. "The Clouds Project: Design and
Implementation of a Fault-Tolerant Distributed Operating System." TECHNICAL
REPORT Grr-ICS-85/29, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1985.

[Dasg86a] Dasgupta, P. "A Probe-Based Monitoring Scheme for an Object-Oriented
Distributed Operating System." PROCEEDINGS OF THE CONFERENCE ON OBJECT
ORIENTED PROGRAMMING SYSTEMS, LANGUAGES AND APPLICATIONS (ACM
SIGPLAN), Portland, OR (Sept. 1986): 57-66. (Also available as Technical Report
GIT-ICS-86/05.)

[Davi81a] Davidson, S. and H. Garcia-Molina. "Protocols for Partitioned Distributed Database
Systems." PROCEEDINGS OF TIE SYMPOSIUM ON RELIABILITY IN DISTRIBUTED
SOFTWARE AND DATABASE SYSTEMS, Pittsburgh, PA (July 1981).

[Davi82a] Davidson, S. "An Optimistic Protocol for Partitioned Distributed Database
Systems." PH.D. DISS., Department of Electrical Engineering and Computer

A-I1

Science, Princeton University, 1982.

[Garc83a] Garcia-Molina, H., T. Allen, B. Blaustein, R. M. Chilenskas, and D. R. Ries.
"Data-Patch: Integrating Inconsistent Copies of a Database after a Partition."
PROCEEDINGS OF THE THIRD SYMPOSIUM ON RELIABILITY IN DISTRIBUTED
SOFTWARE AND DATABASE SYSTEMS, Clearwater Beach, FL (October 1983).

[Giff79a] Gifford, D. K. "Weighted Voting for Replicated Data." PROCEEDINGS OF TtIE

SEVENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (AC., SIGOPS), Pacific
Grove, CA (December 1979).

[Herl84a] Herlihy, M. "Replication Methods for Abstract Data Types." PH.D. DISS.,
Laboratory for Computer Science, Massachussetts Institute of Technology,
Cambridge, MA, May 1984. (Also released as Technical Report MIT/LCS/TR-319.)

[LeLa78a] LeLann, G. "Algorithms for Distributed Data-Sharing Systems Which Use
Tickets." PROCEEDINGS OF THE THIRD BERKELEY WORKSHOP ON DISTRIBUTED

DATA MANAGEMENT AND COMPUTER NETWORKS, Berkeley, CA (August 1978).

[McKe84a] McKendry, M. S. "Fault-Tolerant Scheduling Mechanisms." (UNPUBLISHED

TECHNICAL REPORT), School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, May 1984. (Draft only.)

[Moss81a] Moss, J. "Nested Transactions: An Approach to Reliable Distributed Computing."
TECHNICAL REPORT MIT/LCS/TR-260, MIT Laboratory for Computer Science,
1981.

[Pitt86a] Pitts, D. V. "Storage Management for a Reliable Decentralized Operating System."
PH.D. DISS., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as Technical Report GIT-ICS-
86/21.)

[Spaf86a] Spafford, E. H. "Kernel Structures for a Distributed Operating System." PH.D.
DISS., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as technical report GIT-ICS-86/16..)

[Ston79a] Stonebreaker, M. "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed INGRES." TRANSACTIONS ON SOFTWARE ENGINEERING (IEEE)
5, no. 3 (May 1979).

[Thom79a] Thomas, R. H. "A Majority Consensus Approach to Concurrency Control for
Multiple-Copy Databases." TRANSACTIONS ON DATABASE SYSTEMS (ACM) 4, no. 2
(June 1979).

[Wrig84a] Wright, D. D. "Managing Distributed Databases in Partitioned Networks." PH.D.
DISS., Department of Computer Science, Cornell University, Ithaca, NY, January
1984. (Also available as Cornell University Technical Report 83-572.)

Appendix B

Distributed Locking:
A Mechanism for Constructing

Highly Available Objects

C. Thomas Wilkes* Richard J. LeBlanc, Jr.t
University of Lowell Georgia Institute of Technology

April 4, 1988

Abstract

Distributed Locking refers to a methodology for constructing replicated ob-
jects from single-site implementations in an action-based object-oriented system
such as the Clouds project. It also refers to the mechanism provided to sup-
port this methodology in Clouds. This mechanism assumes no particular policy

for control of replica concurrency and consistency; rather, it provides primitives
with which a wide range of policies may be supported. Also, by use of extensions
to the Aeolus systems programming language supporting replication events, the
specification of the availability properties of an object is abstracted from the
object implementation. Thus, a replicated object may be constructed from a
single-site implementation, or changes made in the policies used for control of
a replicated object, with little or no change to the object implementation. Ex-
amples of the specification and use of the quorum consensus replication control

policy using the Distributed Locking primitives are described.

*This work was performed while the author was with the School of ICS at Georgia Tech. Author's
present address: Department of Computer Science, University of Lowell, One University Avenue,
Lowell, MA 01854. Internet: wilkes@hawk.ulowell.edu

t Author's address: School of Information and Computer Science, Georgia Institute of Technology,

Atlanta, GA 30332-0280. Internet: rich%lynx@gatech.edu

B

Distributed Locking:
A Mechanism for Constructing Highly Available Objects

1. Introduction

Among the benefits claimed for distributed computing are improvements in system fault
tolerance and reliability, and increased availability of data and services. The Clouds project at
Georgia Tech is one of a number of recent proposals in which reliability in a distributed system is
based on the use of atomic actions, a generalization of the transaction concept of distributed
databases. As part of the Clouds project, we have designed and implemented a high-level
language providing access to the synchronization and recovery features of the Clouds system; this
language is being used to implement those levels of the Clouds system above the kernel level. It
also provides a framework within which to study programming methodologies suitable for
systems based on the action concept, such as Clouds. Among the properties needed by systems
data structures, the design of which must be addressed by such methodologies, are resilience-
survivability and consistency of the data despite crashes and other faults; and availability-
increased possibility of access to data despite network partitions or failures of some sites in a
multicomputer system. Together with a mechanism that ensures forward progress--continued
execution of jobs despite failures, these properties provide fault tolerance in the system.

In mis paper, we describe some of the results of a study of methods of achieving fault tolerance in
the Clouds system, in particular achieving increased availability of objects in Clouds. The
remainder of this introduction presents the problems explored by this work. Section 2 describes
the model of distributed computation in which the problems posed by the research were examined
(the Clouds system) and the tools which were used to address these problems (the Aeolust

programming language). In Section 3, we present a methodology for achieving available services
by conversion of resilient sipgle-site implementations into replicated implementations. A
mechanism with which we proposes to support this methodology, called Distributed Locking, is
also described in Section 3. In Section 4, we describe a linguistic feature for the specification of
the availability properties of an object replicated via Distributed Locking. The language runtime
support features (primitives) required to support Distributed Locking, as well as operating system
support needed to support these features, are presented in Section 5. In Section 6, previous work
in database systems is presented as well as work in the operating system area that is relevant to
the author's research. Finally, the conclusions which we have drawn from this research are
summarized in Section 7, as are plans for future extensions of this work.

The work described in this paper is, in general, concerned with situations in which sites fail by
halting, that is, fail-stop failures [Schl83a]; in particular, malicious activity by failed sites (so-
called Byzantine failures) are not considered here.

1.1 The Need for Availability

Even if a computation is distributed, it is subject to a single point of failure if any of the data
objects involved in that computation exist at only a single node. The provision of resilience
alone cannot eliminate the problems caused by site or network failures; although inconsistencies
introduced by such failures have been abolished, any objects existing only at a failed site are
unavailable for the duration of the failure, and thus no computation may proceed which requires

1. Aeolus was the king of the winds in Greek mythology.

B -2-

those objects. A method for eliminating these bottlenecks is data replication, that is, the.
maintenance of copies of an object at multiple sites.

The use of replication introduces the problem of maintaining the consistency of the individual
replicas when operations are executed on them. A common requirement for consistency is that
the replicated object maintain single-copy semantics, that is, that the state of each replica be
consistent with that which would have been obtained had the object existed only at a single site
and had the same sequence of operations been applied to it. This is achieved by a combination of
a mechanism for controlling concurrency among the replicas, and of a mechanism for copying the
state obtained by an operation execution among the replicas.

These mechanisms have been the subject of much study, both in the areas of database systems
and of operating systems. Indeed, it has been found that single-copy semantics is too stringent a
requirement in some applications. (See [Wilk87a] for a discussion of previous work in this area.)
However, most previous work on such mechanisms has been concerned with "fiat" data, such as
files. The unique problems posed for these mechanisms by the object construct used in systems
such as Clouds are discussed in the following section; in so doing, we also introduce some
terminology used in the remainder of this paper.

1.1.1 Problems of Replication in Object-Based Systems In the course of research on methods of
achieving availability in object-based systems such as Clouds, we have found that the generality
of the abstract object structure supported by Clouds poses problems for replication methods
which are not presented by a less general, flat object structure (for instance, files or queues).

(a) representation of (b) physical nesting (c) Ioica nesting
an object of objects of-objects

Figure 1. Pictorial Representation of Object Nesting

The problem lies in the possibility of the arbitrarily complex logical nesting of Clouds objects.
Although Clouds objects may not be physically nested (that is, one object may not physically
contain another object), an object may contain a capability to another object. If an object A
creates another object B, and retains sole access to B's capability (by refraining 1rom passing the
capability to other objects, either explicitly or through an intermediary such as an object directory
service), object B is said to be internal to object A. The internal object B may be regarded as
being logically nested in object A. (A pictorial representation of physical and logical nesting is
shown in Figure 1.) If, on the other hand, object A passes B's capability to some object not
internal to A, or if A registers B's capability with an object directory service, B is said to be an
external object; an external object is potentially accessible by objects not internal to the object

B -3-

, . .. Replicated object

Itn1ernal object

External object

Figure 2. Replicated Object with Internal and External Object References

which created the external object.

Problems arise with replication schemes when internal and external objects are mixed together in
the same structure, i.e., when an object may contain capabilities to both internal and external
objects. (An example of such an object is represented in Figure 2.) These problems are
associated with the method which is used to propagate the state of a replicated object among its
replicas. One such method is to execute at each replica the computation from which the desired
state results; this scheme is called idemexecution. Another method is to execute the computation
at one replica, and then copy the state of that replica to the other replicas; this scheme is called
cloning. (Representations of the idemexecution and the cloning methods are shown in Figure 3.)
Note that the scheme which is used to ensure that the replicas maintain consistent states (e.g.,
quorum consensus) is not involved in these problems, and is considered separately in this
investigation.

External objects cause problems when idemexecution is used to propagate state among replicas.
If the replicated object performs some operation on an external object (e.g., a print queue server),
then-under idemexecution-that operation will be repeated by each replica. If the operation
being performed on the external object is not idempotent, this can cause serious problems (e.g.,
multiple submissions of a job to the print queue). Also, trouble may arise due to idemexecution
if the operation on the external object is non-deterministic (for instance, random number
generation, or disk block allocation among multiple concurrent processes).

On the other hand, internal objects cause problems when cloning is used to propagate state. For
example, assume that each replica of an object creates a set of internal objects. Then, when an
operation is performed on one of the replicas, its state-under cloning-is copied to each of the
other replicas. However, the capabilities to the internal objects of the replicas are contained in
their states; thus, each replica now contains capabilities to the internal objects of that replica on
which the operation was actually performed, and the information about the internal objects of the

B -4-

- - - -I

(a) single (unreplicated) (b) idemexecution on replicated object
otject operation

-----, -- -- - If -- - -

(c) clone (copy) state (d) cloning on replicated object

Figure 3. Replicated State-Copying Methods

other replicas is lost. This problem is illustrated in Figure 4. In Figure 4 (a), each replica has a
capability to its individual internal object. In Figure 4 (b), an operation execution has taken place
at the leftmost replica in the figure, and its state has been cloned to the other two replicas; the
states of the other replicas now contain capabilities to the internal object of the leftmost replica
rather than to their own internal objects.

1.2 The Need for Distributed Locking

In recent years, several researchers have presented algorithms that have explored the feasibility of
trading consistency for availability in specific applications, or have taken advantage of semantic
knowledge of typed objects to increase resilience or availability of these objects. (This related
work is described in Section 6.) It has become clear from this research that, in certain
applications, the ability to exploit trade-offs between consistency and availability, and to make
use of the semantic knowledge of objects towards these goals, is not only feasible but desirable.
It thus seemed inadvisable to limit the user to any pre-specified algorithm; none seemed sufficient
to handle all of the potential applications. Accordingly, the focus of the research presented here
changed to the question of how the various algorithms and techniques might be supported in the
Clouds system in a general and efficient manner.

Features to support programming for resilience were introduced into the Aeolus testbed language
at a relatively early stage, as these model closely the mechanisms provided by the Clouds kernel;
these features are described in Section 2. Features to support programming for availability, on
the other hand, were designed at a relatively late stage of this research. Our first attempts to
program available objects in Aeolus soon convinced us, due to their ad hoc nature, of the
desirability of linguistic support in this area. In these early attempts the manual addition of
support for replication to an object originally designed as a single-site implementation was
distressingly inelegant; an example of the result of this strategy is supplied elsewhere [Wilk87a].
This experience suggested that a proper goal would be automation (to whatever extent possible)

B -5-

(a) before cloning of state (b) after cloning of state

Figure 4. State Cloning with Internal Objects

of the process of deriving a replicated implementation of an object from its single-site
implementation. The resulting Distributed Locking mechanism, described in Section 3, provides
support for the control of concurrency and state-copying among replicas of an object while
making no assumptions about the policies used for this control. The abundance of replication-
control algorithms that has appeared in the literature in recent years, often taking advantage of the
semantics of a particular application, makes it clear that limiting support to any particular policy
would be undesirable. Rather, primitives are provided to support programming of custom
replication-control policies which may take advantage of semantic knowledge of objects;
however, options are provided for the automatic use of one of several common replication-control
algorithms, if desired. This is in accord with the philosophy of the Clouds system as
demonstrated by its treatment of the issues of synchronization and recovery. The linguistic
support added to Aeolus to aid the programmer in the specification of the availability properties
of an object is described in Section 4.

2. The Aeolus/Clouds Model

In this section, we provide an overview of the model of distributed computation embodied in the
Aeolus/Clouds system. The background of the Clouds distributed operating system project, as
well as the major concepts and facilities presented by the Clouds system, are presented here; a
more complete description of the system may be found in a recent overview paper [Dasg88a].
Also, the major features of the Aeolus language are described briefly.

2.1 The Clouds System

The Clouds distributed operating system project has been under development at Georgia Tech
since late 1981; the central concepts were developed by Allchin and McKendry in a pair of early
papers [Allc82a, Allc83a], and the Clouds architecture was described in full in Allchin's
dissertation [Allc83bl. The goal of the Clouds project is the implementation of a fault-tolerant
distributed operating system based on the notions of objects, actions, and processes, to provide an
environment for the construction of reliable applications on unreliable hardware. The basic
approach is to exploit the redundancy available in distributed systems which consist of multiple
computers connected by high-speed local area networks. Such systems are called multicomputers
or computer clusters. In Clouds, the notion of an object may be used to represent system
components, such as directories or queues. A set of changes to objects may be grouped into an
action, which corresponds roughly to the transaction concept of distributed database work,
providing an "all or nothing" assurance of atomic execution (a property sometimes called failure

B -6-

atomicity). The underlying support system ensures that, even if the actions extend across
multiple machines, the changes will occur in totality or not at all. At this level, the support
system, known as the Clouds kernel, is maintaining the consistency of the objects. It ensures that
objects either reflect the effects of an action totally or not at all--no intermediate states are
possible. This guarantee of an action's totality permits one to characterize the effects of hardware
component failures: they cause actions to fail. Since a failed action is guaranteed to have had no
effects on the objects with which it interacted, the action may be restarted without concern for
potential inconsistencies it might have created.

Actions in Clouds go beyond the related notion of transactions in a database system. Rather than
modelling all access to objects as simple reads or writes, the Clouds approach supports arbitrary
operations on objects and allows a programmer to take advantage of operation semantics to
increase concurrency, and thereby, performance. Through appropriate use of encapsulation,
concurrent actions can be allowed to change objects without violating serializability.

A powerful feature of Clouds is the separation of the two components the traditional notion of the
serializability of atomic actions, failure atomicity and view atomicity. Failure atomicity, as
mentioned above, refers to the "all or nothing" property of atomic actions; view atomicity
requires that the effects of an uncommitted action are not seen by other actions until commital
occurs, thus avoiding the problem of "cascading aborts" of actions which have viewed
intermediate states of an uncommitted action that later is aborted. This separation of the recovery
and synchronization aspects of serializability allows the Clouds programmer to design objects
that, while maintaining an appearance of serializability to the outside world, may violate strict
serializability internally-in ways based on the programmer's knowledge of the object's
semantics--in the interest of system efficiency.

Objects, actions, and processes are fundamental concepts supported by the Clouds architecture.
To support these concepts, recovery and consistency are incorporated into the basic virtual
memory mechanism [Pitt86a, Pitt88a]. Synchronization mechanisms to control the interactions
of actions are also provided. It is with these tapabilities that Clouds is meant to support the data
integrity required for the implementation of reliable, distributed application programs.

The detailed design of the Clouds kernel is discussed in Spafford's dissertation [Spaf86a]. A
prototype of the Clouds kernel, also described by Spafford, has been implemented on a hardware
testbed consisting of VAX® 750s connected by a 10Mbps Ethernet, several dual-ported disk
drives, and Sun 3 Workstations® running UNIX®-also attached to the Ethernet-that provide a
user interface to thc Cloudis system. The Clouds kernel is implemented "on the bare machine,"
that is, it is not implemented on top of some other operating system such as UNIX. Thus, the
features of objects, actions, and processes have been implemented in the lowest levels of the
kernel, allowing use of the Clouds concepts in the construction of the operating system itself. At
these lowest levels, we attempt to avoid implementing policies, instead providing mechanismv
with which policies may be constructed. Some policies are embedded in subcomponents of the
kernel. The storage management system [Pitt86a] implements support for action-based stable
storage within the object virtual memory mechanism. The action manager [Kenl86a] controls the
interaction of actions with objects, including creation, committal, and abortion of actions, a

" VAX is a registered trademark of Digital Equipment Corp.
® Sun Workstation is a registered trademark of Sun Microsystems. Inc.
@ UNIX is a registered trademark of AT&T.

B -7-

time-based orphan detection facility, and support for lock-based synchronization. Those kernel
subcomponents implementing policy are intended to be replacable with minimal changes to the
rest of the kernel. For instance, the storage management system could be replaced with another
implementing log-based recovery, or the action manager changed to support timestamp-based
synchronization, without fundamental changes to other kernel subcomponents.

The Clouds system above the kernel level consists of a set of fault-tolerant servers which provide
system senices (such as object filing, job scheduling, printer spooling, and the like) to
application programs. (It is for the construction of this level of the Clouds system that the Aeolus
programming language was designed; the kernel itself has been implemented in the C language.)

The location-transparency and resilience mechanisms provided by the Clouds architecture are
used to support the operating system itself and its services. Thus, the system itself is
decentralized (in the sense that the system can survive the failure of any node) and resilient. The
Clouds system may be considered to consist of a set of fault-tolerant objects which in
combination provide a reliable environment for applications.

2.2 The Aeolus Programming Language

In this section we provide a brief overview of the Aeolus programming language. More complete
discussions of Aeolus may be found in previous publications [Wilk85a, Wilk86a, Wilk87a].

Aeolus developed from the need for an implementation language for those portions of the Clouds
system above the kernel level. Aeolus has evolved with these purposes:

" to provide the power needed for systems programming without sacrificing readability or
maintainability;

" to provide abstractions of the Clouds notions of objects, actions, and processes as features
within the language;

" to provide access to the recoverability and synchronization features of the Clouds system; and

* to serve as a testbed for the study of programming methodologies for action-object systems
such as Clouds [LeB185a].

The intended users of Aeolus are systems programmers working on servers for the Clouds
system. Clouds provides powerful features for the efficient support of resilient objects where the
semantics of the objects are taken into account; it is assumed that the intended users have the
necessary skills to make use of these features. Thus, although access to the automatic recovery
and synchronization features of Clouds is available, we have avoided providing very-high-level
features for programming resilient objects in the language, with the intention of evolving designs
for such features out of experience with programming in Aeolus.

2.2.1 Support For Synchronization Aeolus provides :ccess to the action manager's support for
synchronization via a lock construct. An unusual aspect of Aeolus/Clouds locks is that they are
associated not with the specific data being locked, but rather with values in some domain. Thus,
an lock is obtained for a value of an object, and not on the object itself. Thus, for instance, a lock
may be obtained on a file name even if that file does not yet exist. Another interesting feature of
Aeolus/Clouds locks is that they provide a mechanism for the specification of arbitrary locking
modes and arbitrary compatibilities between the different modes, thus allowing the lock to be
tailored to the specific synchronization semantics of a subset of object operations. For example:

type filelock is lock (read : [read], write : [
domain is string(FILENAMESIZE

B -8-

The declaration of filelock defines a lock type over the domain of strings representing
filenames, in which the usual multiple reader/single writer synchronization is specified by the
compatibilities among the read and write modes of the lock.

All locks obtained during execution in the environment of a nested action are retained and
propagated to the immediate ancestor of that action upon committal unless explicitly released by
the programmer. Locks obtained under an action are automatically released if the action aborts or
successfully performs a toplevel commit. Thus, a two-phase locking protocol (2PL) is
maintained, with violations to 2PL allowed (via explicit release of locks) if the programmer
deems such violations acceptable. A lock is available to be granted under a nested action even if
conflicting locks are held under one or more of the ancestors of that action, but not if conflicting
locks are held under an action which is not an ancestor of the nested action [Allc83b]. The power
of the Aeolus/Clouds lock construct in supporting user-defined synchronization lies in the
specification of arbitrary locking modes, and arbitrary compatibilities between those modes, as
well as the dissociation of locks from the locked variables.

2.2.2 Support for Objects The object construct provides support for data abstraction in Aeolus.
A collection of related data items may be encapsulated within an object, which also may provide
operations (procedures that operate) on the data. The only access to the data of an object is via
these operations; thus, an object can strictly control manipulation of its encapsulated data,
helping guarantee the invariants of the abstraction. The declaration of the object defines a type,
called an object type, which may be used in the declaration of variables to hold capabilities to
instances of that object type.

Aeolus provides a hierarchy of object classifications sharing a common implementation and
invocation syntax which offers a trade-off of functionality and efficiency. The object
classifications fall into two groups: the so-called Clouds object classifications
(autorecoverable, recoverable, and nonrecoverable) may make use of the
object management facilities and (for autorecoverable and recoverable types) the
action management facilities, while the non-Clouds object classifications (local and pseudo)
do not use any of the Clouds facilities for action or object management and provide data-
abstraction facilities usable "locally" (without resorting to the system facilities supporting
distribution of objects). On the other hand, the Clouds object classifications provide access to the
support for data abstraction provided by the Clouds system when the expense of that support is
warranted; the separate classifications of Clouds objects allow the programmer to specify the
degree of support (and of incurred expense) required. The object classifications are described in
more detail in the papers cited above; while the autorecoverable classification provides
the paradigm most often presented by other action systems, that is, completely automatic
recovery of the entire object state, the recoverable classification is of more interest here in
that it allows the programmer to tailor object recovery based on the semantics of the object via
mechanisms described below.

The global variables of an object are called collectively the object's state. In an object of class
recoverable, part of the object state may be specified to be in a recoverable area; also, the
programmer may specify an action events part and/or a per-action variables part. Recoverable
areas, action events, and per-action variables are described below.

In order to allow the object to participate in its own creation and deletion, an object
implementation part contains specifications of handlers for the so-called object ,.vents. The
object events include the init or object initialization event, the handler for which is executed
whenever an instance of the object is created by use of an allocator; the reiot or object
reinitialization event, the handler for which is executed-if the object has registercd wi, desire for

B -9-

reinitialization with the action manager-when the system is reinitialized after a crash or network
partition; and the delete or object deletion event, the handler for which is executed when the
object instance is destroyed.

An invocation of an object operation looks much like a procedure invocation, except that, outside
the implementation part of the object itself, an operation name must be qualified by the name of a
variable representing an instance of that object type (or, for pseudo-objects, by the name of the
object type itself). Thus, for an instance of a bounded-stack type, the programmer might write

stack-instance @ push(elem)

When an object invokes one of its own operations, however, the usual procedure call syntax is
used.

Invocations of pseudo-object and local object operations have semantics essentially similar to
those of calls to procedures local to a compiland. The situation is different for operations
declared in objects which use the Clouds object-management facilities (i.e., the so-called
"Clouds objects"). Invocations of operations on Clouds objects are handled by the compiler
through operations on the Clouds object manager on the machine on which the invoking code is
running. The Clouds object on which the operation is being invoked need not be located on the
same machine as the invoking code; the object manager then makes a remote procedure call
(RPC) to the object manager on the machine on which the called object resides. The location-
local or remote--of the object being operated upon, however, need not concern the programmer,
as the RPC process is transparent above the object-management level.

2.2.3 Support for Actions The action concept provides an abstraction of the idea of work in the
Clouds system; an action represents a unit of work. Actions provide failure atomicity, that is,
they display "all-or-nothing" behavior an action either runs to completion and commits its
results, or, if some failure prevents completion, it aborts and its effects are cancelled as if the
action had never executed.

Support for actions in the Aeolus language is relatively low-level. At present, the methodology
of programming with actions is not as well-understood as the methodology of programming with
objects; thus, rather than providing high-level syntactical abstractions such as those available for
object programming, Aeolus allows access to the full power and detail of the Clouds system
facilities for action management. The major syntactic support provided by Aeolus for action
programming is in the programming of action events, recoverable areas, permanent and per-
action variables, and action invocations.

At several points during the execution of an action, the action interacts with the action manager
of the Clouds system to manage the states of objects touched by that action, including writing
those states to permanent (stable or safe) storage, and recovering previous permanent states upon
failure of an action. Thus, failure atomicity may be provided by the action management system.
The action events include:

event name purpose

BOA beginning of action
toplevel_precommit prepare for commit of a toplevel action

nested_precommit prepare for commit of a nested action
commit normal end of action (EOA)
abort abnormal end of action

The interactions with the Clouds action manager necessary when such events take place are done
by default procedures supplied by the Aeolus compiler and runtime system; these procedures are

B -10-

called action event handlers. When an action event occurs for a particular action, the action
manager(s) involved invoke the event handlers for each object touched by that action.

As was described above, by use of the autorecoverable class of object, the programmer
may take advantage of the recovery facilities of the Clouds system by having the compiler
generate the necessary code automatically. This automatic recovery mechanism requires
recovery of the entire state of the object, and uses the default action event handlers. However, it
is sometimes possible for the programmer to improve the performance of object recovery by
providing one or more object-specific event handlers which make use of the programmer's
knowledge of the object's semantics; these programmer-supplied event handlers then replace the
respective default event handlers for that object. Thus, if object class keyword recoverable
is specified in the definition header of the object being implemented, the programmer may give
an optional action event part in the object's implementation part. Following the keywords
action events, the programmer lists the name of each action event handler provided by the
object implementation as well as the name of the action event whose default handler the specified
handler is to override. Thus, for example, the specification (in an object implementing a
bounded-stack abstraction):

action events
stack BOA overrides BOA,
stacknested precommit overrides nestedprecommit

indicates that the default handlers for the BOA and nested yrecommit action events are to
be replaced by the procedures named stackBOA and stacknestedyprecommit,
respectively, for the bounded-stack object type only.

As mentioned above, if an object being implemented is of class recoverable, then some of
its variables may be declared in a recoverable area. When a nested action first invokes an
operation on a recoverable object ("touches" that object), the action is given a new version of the
recoverable area which initially has the same value as the version belonging to the action's
immediate ancestor. The set of versions belonging to uncommitted actions which have touched a
recoverable object is maintained on a version stack by a Clouds action manager. When a nested
action commits, its version replaces that of its immediate ancestor. When a toplevel action
commits, its version is saved to permanent storage. If an action is aborted, its version is popped
from the version stack. Thus, recoverable areas (in conjunction with appropriate use of
synchronization) provide view atomicity, that is, an action does not see the intermediate
(uncommitted) results of other actions. Also, the use of recoverable areas allows the programmer
to provide finer granularity in the specification of that part of the object state which must be
recoverable, since the use of automatic recovery on an object (the autorecoverable object
class) requires recovery on the entire state of the object. The interaction with the action manager
necessary to manage the states of recoverable areas is implemented by the action event handlers
as described above. Again, the default event handlers may be overridden by programmer-
supplied event handlers for the entire object to achieve better performance.

It may sometimes be desirable to make large data structures resilient. In such cases, the
recoverable area mechanism may be inefficient, since it requires the creation of a new version of
the entire recoverable area for each action which modifies the area. Often in such cases the
programmer may take advantage of knowledge of the semantics of the data structure to efficiently
program the recovery of the data structure. The Aeolus language provides two constructs which
aid in the custom programming of data recovery, the so-called permanent and per-action
variables, constructs proposed by McKendry [McKe85a].

B -11-

Any type may be given the attribute permanent. This attribute indicates that members of that
type are to be allocated on the permanent heap, a dynamic storage area in the object storage of
each object instance. This area receives special treatment by the Clouds storage manager; in
particular, it is shadow-paged during the toplevelprecommit action event.

Aeolus also provides the per-action variable construct. A per-action variable specification
resembles a recoverable area specification, and its semantics is also similar, in that each action
which touches an object with per-action variables gets its own version of the vaibbles; however,
the programmer may access the per-action variables not only of the current action, but also of the
parent of the current action. Also, per-action variables are allocated in non-permanent storage,
that is, in storage the contents of which may be lost upon node failure. The variables in a per-
action specification are accessed as if they were fields in a record described by the specification;
two entities of this "record type" are implicitly declared: Self and Parent, which refer
respectively to the per-action variables of the current action and its immediate ancestor.

Permanent and per-action variables may be used together to simulate the effect of recoverable
areas at a much lower cost in space per action. In general, the per-action variables are used to
propagate changes to the resilient data structure up the action tree; these changes are then applied
during the toplevel_precommit action event to the actual data structure in permanent
storage. The use of permanent and per-action variables is shown more fully in the Aeolus papers
cited above.

The right-hand side of an assignment statement may take the form of an action invocation. Here,
the right-hand side (which consists of an operation invocation which, if the operation is value-
returning, is embedded in another assignment statement) is invoked as an action; the action ID of
this action is assigned to the variable designated by the left-hand side of the action invocation.
Thus, for example, if the bounded-stack object mentioned above were defined as a recoverable
object, one might invoke one of its operations as an action:

aID := action(stackinstance @ push(elem)

The action ID may be used as a parameter in operations on the action manager which provide
information about the status of the action, cause a process to wait on the completion of an action,
or explicitly cause an action to commit or abort. By use of additional syntax not shown here, the
programmer may specify that an action be created as a "top-level" action, that is, as an action
with no ancestors; a top-level action cannot be affected by an abort of any other action.
Otherwise, the action is created as a "nested" action, that is, as a child (in the so-called action
tree) of the action which created it; as described below, a nested action may be affected by an
abort of one of its ancestors. Optionally, a timeout value may be specified in the action
invocation clause; if the action has not committed by the expiration of this timeout, the action
will be aborted. If no timeout value is specified, a system-defined default value is used. The
detailed semantics of action invocations, and requirements on objects that may have operations
invoked as actions, are described in the papers on Aeolus cited above.

3. Overview of Distributed Locking
In this section, we outline a model of concurrency control and replication management for the
Clouds system, called Distributed Locking (DL). The linguistic and runtime mechanisms
required to support DL are described in the following sections.

In the DL methodology, derivation of a replicated object from its single-site implementation
consists essentially of two steps:

B-12-

I. The user writes a single-site definition and implementation of the object. This
implementation includes specification of all lock types used by the object to ensure view
atomicity in the presence of concurrently-executing actions.

2. The user writes an availability specification (availspec) for the object. This specifies
the number of replicas of each instance of the object to be generated, the replication control
policies to be used, and (optionally) the relative availabilities of the modes of each lock
type specified by the object. If no availspec is provided, the object is assumed to be
nonreplicated.

The availspec construct is discussed in detail in Section 4. Note that availabilities are
expressed in terms of the modes of locks rather than in terms of operations. Together with the
domain notion, with which lock granulaities are expressed in Aeolus/Clouds, this gives the user
more latitude in the expression of relative availabilities than is provided in related work
(described in Section 6).

The automation of replication provided by the DL methodology is based on a concept similar to
that of action events and object events as discussed in Section 2. The programmer may specify
the interaction of an object with the action management system at critical points in the processing
of an action via writing handlers for the action events; handlers for object events allow the object
to participate in its creation and destruction. In a similar spirit, we have identified two critical
points in the handling of an operation invocation on a replicated object: the lock event, during
which the invocation attempts to synchronize some subset of the replicas of the object; and the
copy event, during which the state resulting from the invocation is transmitted to the subset of
replicas synchronized during the corresponding lock event. These events correspond to the
concurrency control and consistency maintenance aspects of replication control, respectively.
Note that the names we have chosen for these events reflect the lock-based synchronization and
stable storage-based recovery mechanisms of Clouds; extensions to other synchronization and
recovery methods are considered briefly in Section 7. For reasons examined in Section 5, we
require that an invocation on a replicated object be made in the context of an action.

Policies for control of concurrency among replicas, and for control of the copying of state among
replicas, are expressed in a lock object event handler and a copy action event handler,
respectively, in the availspec for an object. Preprogrammed default handlers for these
events, implementing commonly-used schemes such as quorum consensus, may be requested by
the user if appropriate. If the user wishes to provide application-specific handlers for these
events, the same system-provided primitives used in the construction of the default handlers are
available for use in programming user-specified handlers. These primitives are described in
Section 5, and example event handlers using the primitives are also presented there.

4. Availability Specifications

As discussed in Section 6, the Consensus Locking model of Herlihy allows the specification of
the availability properties of an abstract data type in terms of the initial and final quorums
required for an operation. It has already been mentioned that in the Distributed Locking model it
makes sense to speak of the availability properties of lock modes (rather than of operations, as in
other schemes). Some means is needed of allowing the programmer to specify these availability
properties for an object without requiring modification of the single-copy version of the object
definition or implementation.

In Distributed Locking as implemented in the Aeolus/Clouds system, the aailability properties
of a replicated object are specified in a separate compiland for that oh!cL type, called the
availability specification part (or avajlspec, for short). The propcri -s specified in an

B -13-

availspec include the number of replicas, the replication management algorithm desired (e.g.,
quorum assignment, available-copies, etc.), the name of each lock type declared by the
implementation of that object along with the names of that lock's modes, and (optionally) the
availability relationships among the modes of each lock type used by the implementation of that
object. All internal and/or non-Clouds objects used by a replicated object must also have a
replication specification; this requirement is applied recursively to these objects. The availability
information of a non-Clouds object is inherited by the object which imports it; thus, the effect is
as if locks declared by non-Clouds objects were instead declared by the importing Clouds object.

If a voting method is chosen, the quorum assignments for each lock may be derived from the
replication specification using integer programming methods. The availability relationships
among locking modes, expressed as relative availabilities, may be transformed into constraints on
the space of feasible solutions; the objective function may be chosen to maximize the minimum
availability over the locking modes subject to these constraints. The construction of this linear
program is discussed in more detail later in this chapter. This information is transformed by the
Aeolus compiler into a table of replication management information which is stored in the
TypeTemplate of the Clouds object (the TypeTemplate is used by the Clouds system to
generate instances of an object type). This information is placed in the header information of
each object instance and is used by the Distributed Locking primitives to guide the selection of
sets of replicas for Distributed Locking (see Section 5).

The Aeolus availability specification bears some resemblance to the fault-tolerance specification
of the HOPS system (cf. Section 6). However, in HOPS the programmer must select among
several predefined policies for replication control; there is no provision for user programming of
these policies. The ability of the programmer to specify lock and copy event handlers as
well as the provision of primitives in support of programming these handlers allows the use of a
wider range of replication control policies with the Aeolus avail spec construct.

4.1 Example of an Availability Specification

A sample availspec making use of the quorum event handlers is given in Figure 5. This
availspec applies to a resilient symbol table object, the definition for which is presented in
Appendix A; the implementation of this object is presented and discussed in detail in [Wilk87a].
For the purposes of this example, we will describe only the locks declared in the symbol table
implementation.

For synchronization purposes, a lock is declared which allows the entire symbol table to be
locked:

symtablelock : lock (exact exact], nonexact : nonexact I1

Note that operations acquiring symtablelock in exact mode may run concurrently with
other operations acquiring it in exact mode, and similarly for nonexact mode; however,
operations attempting to acquire the lock in exact mode must block on those holding it in
nonexact mode, and vice versa. The use of symtable lock is to lock out changes during
the exactlist operation. Thus, the insert and delete operations acquire this lock in
nonexact mode, while the exact list operation acquires it in exact mode; the
lookup and quick list operations need not acquire the lock at all.

The resilient symtab object must operate in an action environment; thus, additional
synchronization is needed to assure the view atomicity of modifications. For this purpose, a new
lock variable is introduced which controls the visibility of names in the symbol table:

B -14-

availspec of object symtab (d unsigned) is

Availability specification of the symbol table object using
the quorum consensus scheme. The DistLock pseudo object
definitions are imported automatically by all availspecs,
but we must import the quorum definitions to use its
predefined handlers.

import quorum

First, we specify the degree of replication (the number of
replicas). Here, the degree is taken from an additional
param&-er, d, which is specified during creation of an
instance of this object.

degree is d

The resilient syn'tab object defines two locks, each with two
modes. We define the relative availabilities for the modes
of each lock as follows. The relative availabilities are
used in the constraints of an integer program which is used
in turn to generate the quorum assignments for each lock
mode.

lock symtable_lock with exact = nonexact

lock name-lock with read > write

The definitions of the lock and copy events. Here, we just
use the predefined handlers for quorum consensus.

availspec events
quorumlock overrides lockevent,
quorum_copy ovecrides copyevent

end availspec. ! symtab

Figure 5. Availability Specification for the Resilient Symbol Table

name-lock : lock (write : []
read : [read I) domain is nametype

This lock defines the usual multiple reader/single writer protocol over values of nametype
(that is, the type of keys). The insert and delete operations acquire this lock in write
mode; the find operation acquires it in read mode. Thus, attempts to insert or delete a given
name may not execute concurrenfly with each other or with attempts to read that name.

The degree of replication (i.e., the number of replicas for a given instance of symtab) is given
as a formal parameter to the availspec; the actual parameter is supplied (in addition to any
object parameters specified by the definition part of the object) during creation of object

B -15-

instances.

The availspec also specifies the relative availabilities of the modes of each lock declared by
symtab. Here, the two modes of symtable lock are declared to have the same availability
level; however, the read mode of name-lock is declared to be more available than the
write mode. The relative availability declarations are used to determine the size of quorums
for each mode.

Finally, the alternate handlers for the lock and copy events are specified. Here, the
quorum lock and quorum-copy operations made accessible by importing the quorum
pseudo-object are used.

4.2 Computing Quorum Assignments

When a voting method is used for replication control, the system requires information about the
minimum number of replicas required to constitute a quorum for each lock mode. As shown in
the example availspec in the previous section, the programmer may specify the relative
availabilities of the modes of each lock. This information is used to generate constraints for an
integer program which computes the actual quorum requirements; the requirements for the modes
of each lock of the object are then stored in the object state in an array associated with that lock.
A primitive is provided for use in a lock event handler which returns the minimum quorum
size associated with the lock and mode active at the invocation of the handler (that is, the request
for which caused the lock event). The Distributed Locking primitives are described in Section
5.

The integer program used to generate the quorum information for each lock is built as follows. If
the ith variable of the integer program represents the minimum number of replicas required to
constitute a quorum for mode i of the lock, then the objective function is chosen to minimize the
maximum value over all of the variables. As the availability of a mode is inversely proportional
to the size of the quorum required for that mode, the objective function has the effect of
maximizing the minimum availability over the modes. The relative availabilities of the locking
modes as specified by the programmer in the availspec are used as constraints on the integer
program; if no relative availabilities were specified, the availabilities of the modes are taken to be
equal. There are additional constraints generated by the requirement of voting methods that the
quorums of each pair of modes intersect (that is, that the sum of each pair of variables be greater
than or equal to the degree of replication plus one), as well as that the value of each variable be
nonnegative and be less than or equal to the degree of replication.

5. Support for Distributed Locking

As defined in Section 3, the term Distributed Locking refers to a methodology for deriving a
replicated implementation from its single-copy version, as well as to a mechanism to support this
methodology. A powerful feature of Distributed Locking is that it does not assume any particular
policy for replication control. Although the user may easily specify use of one of several default
policies in the areas of replica concurrency control and state copying, it also allows the user to
explicitly program policies for these purposes. The mechanisms provided by Distributed Locking
for support of both default and user-programmed policies are described below.

5.1 Naming Replicated Objects

The mechanism required for support of Distributed Locking requires modifications to the Clouds
object naming scheme to support replication.

B -16-

We have considered two different capability-based naming schemes which may be used in
support of state cloning, as described in Section 1. The first scheme requires minimal changes to
the Clouds kernel, but relies on facets of the Clouds object lookup mechanism which may not be
applicable to other systems. In Clouds, the search for an object begins locally (that is, on the
node which invoked the search), and-if the object is not found locally--proceeds to a broadcast
search. If the internal objects belonging to a replica are constrained to reside on the same node as
their parent object, then the local search will locate the local instance of the internal object. (This
constraint is not considered to be onerous, since the internal objects of each replica need to be
highly available to that replica in any case, and thus should logically reside on the same node as
the parent replica.) Thus, each replica of an object (each of which resides on a separate node) may
maintain its set of internal objects using the same capabilities as each other replica. (This
situation may be created by initializing one replica, and then cloning its state to the other
replicas.) Although there will thus be multiple instances (on separate nodes) of internal objects
referenced by the same capability, there should be no problems caused by this, since--by the
definition of internal object---only the parent object or its internal objects may possess the
capability to an internal object, and the object search will always locate the correct (local)
instance. Thus, state cloning may be used to copy the state of a replica to the other replicas
without causing the problems with respect to internal objects described in Section 1 (concerning
references to internal objects contained in the replica's state), since under this scheme all replicas
may use the same capabilities for referencing internal objects. This scheme is an extension of a
facility already supported by the Clouds kernel for cloning read-only objects such as code. This
scheme is called vertical replication, since it ,.aiatains the grouping of internal objects with their
parent object.

The other naming scheme makes fewer assumptions about the lookup mechanism than vertical
replication, but requires more kernel modifications. In the second scheme, each instance of the
replicas' internal objects is again named by the same capability, at least as far as the user is
concerned; however, the kernel maintains several additional bits associated with each capability
identifying a unique instance. (These additional bits may be derived, for example, from the birth
node of the instance.) When a (parent) replica invokes an operation on an internal object, the
kernel selects one of the replicas of the internal object according to some scheme (e.g., iteration
through the list of nodes containing such objects until an available copy is located). Thus, a set
of replicas of internal objects is maintained in a "pool" for access by all parent replicas. Again,
each parent appears to use the same (user) capability to reference a given internal object, so the
problems of state cloning disappear. Since this scheme maintains a logical grouping of the copies
of an internal object, rather than grouping internal objects with their parent object, this scheme is
called horizontal replication. One such naming scheme is described in a paper by Ahamad et al.
[Aham87a]

The attractions of the vertical replication scheme are that it is conceptually simple, that it reqvires
no modifications to the kernel capability-handling mechanisms, and that, by requiring
coresidence, it enforces a property which enhances availability. To see this, recall that
independent failure modes are desirable among different replicas of a replicated object, since the
probability that the replicated object will be available is the probability that any one of the set of
replicas will be available. On the other hand, dependent failure modes are desirable among a
given replica and its internal objects, since the probability that the given replica will bc available
is the probability that all of the set of internal objects will be available. Requinng corcsidence of
objects related by logical nesting introduces dependence of their failure modes.

Unfortunately, the vertical replication scheme is not viable in general, since the coresidence
requirement may sometimes be unrealistic. It may sometimes be the case that it is impossible to

B -17-

satisfy coresidence, due to the size of nested objects (making it impossible to accommodate them
on the same node), or due to insufficient space because of previously-existing objects on that
node. Thus, vertical replication must be abandoned as lacking sufficient generality in its
applicability. Fortunately, the horizontal replication scheme does not share this drawback.

The horizontal replication scheme has been further developed in a recent paper by other
researchers on the Clouds project [Aham87b]. However, the invocation scheme may be altered to
take advantage of coresidence when possible. The search scheme used for invocation of
replicated objects in the paper cited above involves a random choice among the set of replicas.
This differs markedly from the current Clouds search scheme for non-replicated objects, which is
essentially as follows:

if <object found locally> then
<perform invocation on local object>

else
<perform global search>

end if

This search scheme may be modified to take advantage of coresidence as follows:

if <object found locally> then
<perform invocation on local object>

else
if <object is replicated> then

<select randomly among the set of replicas>
else

<perform global search>
end if

end if

Note that, if only one replica is stored per node, the local search involves only the so-called "user
capability;" that is, it does not involve the extra bits used by the "kernel capability" to
distinguish among replicas. If one allows more than one replica per node, some use of the kernel
capability must be made to select an appropriate instance; this may require specific knowledge of
which replicas are stored at which nodes.

5.2 Invocation of Lock and Copy Events

Support of the Distributed Locking mechanism requires modification of the Aeolus/Clouds object
and action management facilities in two areas.

1. When an operation attempts to obtain a lock on an instance of a replicated object, locks are
obtained at some appropriate subset of its replicas, by invoking the lock event handler on
that object. (Using terminology introduced by Ahamad and Dasgupta [Aham87b], the
replica at which the original invocation took place is called the primary cohort [p-cohort];
the other members of the locked subset of replicas are called secondary cohorts [s-
cohorts].)

2. During the handling of the precommit event of the controlling action, the statc of each p-
cohort touched by that action is copied to its s-cohorts, by invoking the copy event handler
on each p-cohort.

In Section 1, two methods of copying object state applicable to the Clouds model wcre identified:

1. idemexecution, or execution of an invocation at each member of the set of replicas: and

B -18-

2. cloning, or execution of an invocation at a single replica, and then explicitly copying its
state to the other replicas.

Because of the drawbacks of idemexecution (including the possibility of repeated invocations on
objects external to the replicated object, as well as the difficulty of handling invocations with
non-deterministic results in this scheme), the most viable mechanism seems to be cloning.
However, the Distributed Locking mechanism does not preclude the use of idemexecution in the
copy event, and provides primitives for its support.

Since a replicated object may have an arbitrary structure of logically nested objects, it is a non-
trivial problem to determine exactly what state of which objects must be copied to implement a
cloning operation. That is, it does not suffice to merely copy the state of the p-cohort to its s-
cohorts; the states of all objects nested with respect to the p-cohort which were involved in the
given operation must also be copied to their respective replicas (the nested objects of the s-
cohorts). Fortunately, the Clouds action mechanism provides a means of determining which
objects must be cloned: the action manager maintains a list of objects touched by an action. (This
is the reason behind requiring that invocations on replicated objects take place in the context of
an action.) Indeed, one need only perform cloning upon commit of an action, since the results of
an action become visible to other actions only after commit. At that time, the so-called "shadow
set" of each touched object is available. (In very simplified terms, this is the set of pages in the
object's recoverable area which have been modified by the action.) If the constraint is made that
all replicated objects be recoverable, then to implement cloning, one need only copy the shadow
set of each touched object to the other replicas in that object's set, and perform the commit
actions of storage management at each replica. The shadows are committed at each of the s-
cohorts as if the shadows had been produced by execution at that s-cohort.

5.3 Primitives for Lock and Copy Event Handlers

If the user wishes to provide application-specific handlers for these events, the same system-
provided primitives used in the construction of the default handlers are available for use in
programming user-specified handlers. These primitives, and their purposes, include those for
such purposes as:

" acquisition at a specific replica of the currently-requested lock (with the same mode and
value, if any), for implementing lock propagation;

• invocation at a specific replica of the same operation (with the same parameters) requested at
the current replica, for implementing idemexecution;

" broadcast of state shadow sets to all replicas holding a specified lock (with a specified mode
and value), for implementing cloning via shadows; and

" invocation at a specific replica of an arbitrary operation, for implementing cloning via logs or
state reconciliation strategies.

The intention is to provide facilities at a level sufficiently low to accommodate all schemes of
interest. Some other useful predefined objects, such as those implementing list abstractions, are
available for such purposes as maintaining and traversing the list of replicas at which locks have
been obtained (and to which the object state must later be copied).

The primitives described above are encapsulated in an Aeolus pseudo-object called DistLock.
The definition of DistLock is presented in its entirety in Appendix B.

B -19-

implementation of pseudo object quorum is

Here, we define handlers for the lock and COpy events which
implement quorum consensus. This pseudo object is imported
by any availspec wishing to use its predefined handlers.

import DistLock

procedure quorumlock () is
A simple-minded ok event handler for quorum consensus.
Locks are obtained on at least a minimum quorum assignment
specified by the assignment matrix generated by the
importing availsc.

this-version ,
maxversion version-number
num locked
good replica replica_number

begin
Find out how many replicas have been locked already by
the current action.

hum locked := DistLock @ currentlylocked()

Initially, the latest version seen is set to this
instance's version number.

maxversion := DistLock @ myversion()

! Attempt to lock all available replicas.
for r in replica_number[1 .. DistLock @ degree() I loop

if DistLock @ lock_replica(r, this version) then
num locked += 1
if this version > max-version then

max-version :- this-version
good replica r

! remember which replica has the latest version
end if

end if
end loop

At least a quorum of replicas must have been locked. If
not, abort the invoking action.

if num locked < DistLock @ quorumsize() then
AbortMyself()

end if

If there is a later version of the state than that of
this replica, copy it here. (This updates the local
version number.)

if goodreplica <> DistLock @ myreplica() then
if not DistLock @ get_state(good_replica) then

AbortMyself() replica was unavailable

B -20-

end if
end if

Copy the local state to all replicas which have version
number less than that of the local copy.

for r in replica_number[1 .. DistLock @ degree() I loop
if not DistLock @ send state(r) then

Abort Myself() ! replica was unavailable
end if

end loop
end procedure ! quorumlock

procedure quorum copy is
The COPY event handler for quorum consensus. The shadow set
is copied to the set of replicas locked in the lock event.

begin
if not DistLock @ broadcast shadows() then

AbortMyself() ! copy was unsuccessful
end if

end procedure ! quorumcopy

end implementation. ! quorum

Figure 6. Lock and Copy Event Handlers for Quorum Consensus

5.4 Examples of Event Handlers in Distributed Locking

A sample implementation of lock and copy evz.nt h=dlcr: ;zg n General Quorum
Consensus algorithm are given in Figure 6. The treatment of these event handlers has been kept
on a fairly naive level to avoid obscuring neither the general lines of the algorithm used nor the
use of the Distributed Locking primitives. The handlers are encapsulated in a pseudo-object
called quorum which may be imported by an availspec in order to use its handlers.

As described in a previous section, the replica of an object at which an operation is invoked is
called the primary cohort or p-cohort; a request for a lock at the p-cohort causes its lock event
handler to be activated. The handler for the lock event, here called quorumlock, attempts
to lock each other available replica (called secondary cohort or s-cohort) by use of the
lock replica Distributed Locking primitive; if successful, this primitive returns the version
number of the new s-cohort as an out parameter. The maximum version number over all s-
cohorts is determined and compared with the version number of the p-cohort; if the latter is not
the latest version, the state of the s-cohort having the latest version is copied to the p-cohort. In
any case, at this point the latest state is copied to all s-cohorts having earlier states. If the number
of s-cohorts is not at least as great as the quorum assignment for the requested lock mode, the
enclosing action is aborted.

When the action enclosing the operation invocation prepares to commit, the copy event handler
(here called quorumcopy) is activated. This handler uses the broadcast shadows
primitive to copy the shadow set (of changed pages) of the p-cohort to the s-cohorts locked in all
activations of the lock event handler by the current action. If the copy is successful, the
shadow sets are committed at the s-cohorts as well as the p-cohort to yield the updated state.

B-21-

There are obvious improvements which might be made to this simple i _rsion of quorum. For
example, quorum lock relies on the lock replica primitive to "fall through" when an
attempt is made to lock a replica which is already an s-cohort. A more sophisticated
implementation could maintain a set of replica numbers representing the current set of s-cohorts
in order to avoid the overhead of a remote invocation for each redundant lock _replica call.

The use of the broadcastshadows primitive in quorum-copy requires that the states of
all s-cohorts be identical to that of the p-cohort when the lock event handling is complete, so
that the shadow set broadcast during the copy event can be committed into a common
permanent state at each replica; this is achieved by copying the state of the replica with the latest
version number to those replicas with earlier versions of the state. This implementation assumes
that it is uncommon for the version number of a replica to be "out of synch" with its fellow
replicas, which is a reasonable assumption if most, if not all, replicas are available to become s-
cohorts during each lock event. If this assumption is invalid, it may be more efficient to avoid
copying of the latest state to the s-cohorts during the lock event and copying shadow sets
during the copy event by copying the entire state of the p-cohort to the s-cohorts during the
copy event.

6. Related Work
In this section, previous work on the properties of resilience and availability in distributed
applications is examined. The issues of resilience in work related to Clouds have been examined
in previous Clouds dissertations [Allc83b, Spaf86a, Pitt86a]; the discussion in this chapter thus
concentrates on the issues of availability as treated by other researchers, except where the
previous work relates to the linguistic support for resilience as provided in Aeolus.

The study of the use of replication to enhance availability first occurred in the area of distributed
database systems, and was later adopted in the area of distributed operating systems. Thus, the
problems in the control of concurrency among replicated objects were studied and, for the most
part, solved by database researchers; the concurrency control methods used by the operating
systems projects described below are largely derived from the database research. A survey of this
wcrk appears in a recent book by Bernstein et al. [Bem87a] The history of these efforts is also
summarized by Wright [Wrig84a]. However, the research in database systems has been limited
to consideration of "flat" objects, such as records or files; as was shown in Section 1, the
generalization to arbitrary structure of objects in distributed operating systems research leads to
problems related to the mechanisms used for the copying of state among replicas.

6.1 Replication in Database Systems

As with most of the topics involved in the study of distributed systems, the synchronization and
recovery of replicated data was first studied in the area of distributed database systems.
Examples of database concurrency control methods methods are voting schemes
[Giff79a,Thom79aJ, available-copy methods [Good83a], primary copy methods [Ston79a], and
token-passing schemes [LeLa78a]. The intent of these methods is to cisure consistency of the
replicated data by requiring access to a special copy or set of copies of the data during failures or
partitions. Primary copy methods allow access to a copy during a network partition only if the
partition possesses the designated primary copy of the data. Token-passing schemes are an
extension of primary copy methods; a token is passed among sites holding a copy of data, and
that copy at the site currently holding the token is considered the primary copy. Yet another
extension of primary copy methods are the voting schemes. Each copy of the data object is
assigned a (possibly different) number of votes; a partition possessing a majority of the votes for
that object may access it.

B-22-

Finally, available-copy methods follow a "read-one, write-all-available" discipline. A read
operation may access any initialized copy (that is, one which has already processed a write
operation). A write operation must access all copies; those which are unavailable for writing are
called missing writes. A validation protocol, which runs after all reads and writes of a
transaction have either been processed or timed out, guarantees one-copy serializability. This
protocol ensures that all copies for which missing writes were recorded are still unavailable, and
that all copies accessed are still available. Several researchers have recently proposed
enhancements to the original available-copies algorithm [Skee85a, E1-A85a, Long87a].

El Abbadi has recently proposed a paradigm for developing and analyzing concurrency control
protocols for replicated databases, especially those handling partition failures [EI-A87a]. He has
also proposed a new protocol, developed within this paradigm, which allows read and write
access to data despite partitions.

6.2 Replication in Operating Systems

Previous work in the area of replication of data in distributed operating systems includes the ISIS
system at Cornell, the Eden system and the Emerald language at the University of Washington,
the Argus system at MIT, Cooper's work on the Circus replicated procedure call facility at
Berkeley, the HOPS project at Honeywell, Inc. and Herlihy's work at MIT (General Quorum
Consensus) and CMU (Avalon).

6.2.1 ISIS The ISIS system developed at Comell [Birm84a, Birm85a] supports k-resilient objects
(objects replicated at k+ I sites and which can tolerate up to k failures) by means of checkpoints
and the "available copies" algorithm. ISIS objects can refer to other objects, although
apparently all such "nested" objects are considered to be external. This system provides both
availability and forward progress; that is, even after up to k site failures, enough information is
available (at the remaining sites possessing an object replica) that work started at the failed sites
can continue at these remaining sites. This is accomplished through a coordinator-cohort
scheme, where one replica acts as master during a transaction to coordinate updates at the other,
"slave" replicas ("cohorts"). The choice of which replica acts as coordinator may differ from
transaction to transaction. The object state is apparently copied from the coordinator to the
cohorts via a cloning operation; this operation has been described as propagating a checkpoint of
the entire coordinator [Birm84a], or, in a more recent paper, as propagating the most recent
version in a version stack [Birm85a]. In the current system, it is assumed that the network is not
subject to partitioning.

In ISIS, a transaction is not aborted when a machine on which its coordinator is running fails
(transactions are usually aborted only when a deadlock situation arises). Rather, the transaction is
resumed at a cohort from the latest checkpoint, in what is called restart mode; this cohort
becomes the new coordinator. Operations which the coordinator had executed after the latest
checkpoint took place must be re-executed at the new coordinator.

In the course of an operation on a k-resilient object, the coordinator may perform operations on
other objects to which it contains references. Such operations on "nested" objects are called
external actions. Inconsistencies can arise due to external actions performed during restart mode;
operations performed on external objects by the new coordinator in this mode were also
performed by the old coordinator before it failed. Thus, unless the operations on external objects
are idempotent, inconsistencies can arise. (This problem is closely related to the problem of
idemexecution on external objects, discussed in Section 1.) This problem is solved in ISIS by
requiring external objects to retain results of operations; these retained results are associated with
a transaction ID. When a new coordinator takes over from a failed coordinator and enters restart
mode, it uses the same IDs for its external operations, and rather than re-execute these operations,

B -23-

the external objects merely return the associated results.

There is also an idemexecution scheme due to Joseph [Jose85a, Jose86a] which was apparently
implemented as an experiment using the ISIS system as a testhed, rather than as part of the ISIS
replication mechanism itself. In Joseph's scheme, the coordinator performs the requested
operation, and then instructs its cohorts to perform the same operation.

Recently, a new version of the ISIS system, called ISIS-2, has been designed; it is anticipated that
this new system will be operational by Fall 1987. The ISIS-2 design exploits a new abstraction
called the virtually synchronous process group [Birm87a]. In this abstraction, a distributed set of
processes cooperate to perform work in an environment in which broadcasts, failures, and
recoveries are made to appear synchronous.

6.2.2 Eden and Emerald The Eden system [Alme83a, Blac86a] was under development at the
University of Washington from September 1980 until late 1986; the system has been operational
on a collection of VAX systems (and later Sun workstations) since April 1983. Support in the
Eden system for replication has been studied at both the kernel level and the object level. The
kernel level implementation of replication support is called the Replect approach (for replicated
"Ejects," or Eden objects), while the object level implementation is called R2D2 (for
"Replicated Resource Distributed Database"). Both implementations use quorum consensus for
concurrency control.

In Eden, objects are active, that is, each object encapsulates-besides data and operations on the
data-one or more active processes which are permanently associated with that objecL
Normally, an object has two forms: an active form (AF) which exists in volatile memory, and a
passive representation (PR), which is a checkpoint of the AF on disk. The PRs are maintained in
permanent object databases (PODs), one of which exists on each node in the system. In the
unreplicated case, an object has only one AF and one PR at any time.

In the Replect approach [Prou85a], although the PR of the object is replicated, the object still has
only one AF at any time. Thus, one capability is used to refer to all replicas of the object. Hence,
a Replect is referenced by the user in the same way as a normal object; the Replect mechanism is
transparent to clients of a Replect. A transaction management facility is required to ensure that
multiple AFs are not produced by competing transactions despite crashes. (The basic Eden
system does not provide a transaction management facility.) Updates are performed by selecting
one of the PODs to act as transaction manager in a master/slave protocol.

In the R2D2 approach [Noe85a], each replica is a complete object, consisting of an AF as well as
a PR. Each replica is unaware of the others, but clients must refer to the replicated object by
using a set of capabilities (to the multiple AFs), one for each replica; thus, this mechanism is less
transparent than the Replect approach. R2D2 objects are stored in a replicated hierarchical
directory structure. Invocations on objects replicated using R2D2 must use a specialized
transaction manager (called R2D2TM), which traverses the replicated directory and handles the
multiple updates on members of the set of replicas. Members of the set which are unavailable
due to crashes are replaced via regeneration. The level of the directory in which the unavailable
object is maintained must be updated to reflect the replacement.

The basic Eden system was not designed to handle partitions [Noe85a]. The two replication
approaches described above compensate for this lack in differing degrees. Using the R2D2
approach, an object will be able to regenerate if its partition contains a copy of the PR and a
suitable number of machines, and will then be able to continue to operate. However, upon the
resolution of the partition, the states of competing versions of the object must be merged. Thus,
the Eden authors prefer to use voting methods, allowing simple merging of partitions, although

B -24-

replicas in a partition without a majority will be unable to operate. Using the Replect approach,
on the other hand, problems arise even with voting methods due to the problem of avoiding
having multiple AFs. If a partition contains a quorum of PRs, but the AF is gone, it is not
possible to tell if the AF is inactive (dead) or in another partition. If one is to allow multiple AFs,
a state-merging scheme must also be provided, since the isolated AF may be updated with no
attempt to checkpoint to the PRs.

No mention is made in the Eden references of support for arbitrary structure of objects or of the
associated problems of state propagation.

Another project at the University of Washington is concerned with the design and
implementation of an object-oriented language for distributed applications [Blac86b, Blac87a].
Emerald provides a hierarchy of object classifications similar to that provided by Aeolus (as
described in Section 2); however, selection of an appropriate classification for an object is made
automatically by the Emerald system. Emerald does not at present provide support for fault
tolerance.

6.23 Argus The Argus system at MIT [Lisk87a, Lisk84a, Lisk83a, Weih83aI is a language and
system for distributed applications which has evolved from the CLU language. Argus provides
an object construct (called Guardian) which encapsulates data and processes, giving an
abstraction of a physical node or server. Argus also retains the cluster construct from CLU,
which provides functionality similar to that of local objects in Aeolus; however, the syntax of
Guardians is not similar to that of clusters. Resilience in Argus is based on the notion of system-
provided primitive atomic data types, from which user-defined atomic data types may be
constructed. These primitive atomic data types also define the synchronization properties of the
user-constructed types. Experience with programming a distributed, collaborative editing system
in Argus has been described by Greif et al. [Grei86a]; one criticism arising out of this experience
was that they were sometimes forced to use a Guardian where a cluster might have been more
appropriate.

Recent work at MIT has been concerned with availability issues in distributed services
[Lisk86a, Lisk87b]. The researchers have developed a method for constructing highly-available
services which maintain a form of view atomicity despite the presence of old information in their
states. This method requires that the properties of the information be stable in the sense that once
a property becomes true, it does not change thereafter. Availability methods possessing this
property are useful in applications such as distributed garbage collection.

6.2.4 Circus Cooper has investigated a mechanism called the replicated procedure call, which
he implemented at Berkeley in a system called Circus [Coop84a, Coop85a]. In Cooper's scheme,
although replicas of an object have no knowledge of each other, they are bound (via run-time
support) into a server called a troupe which may be accessed by client objects. (The client
objects know that the server is replicated.) An object in Circus may have arbitrary structure,
containing references to both internal and external objects. However, the object is currently
required to be deterministic. His scheme uses idemexecution for state propagation. When a
troupe accesses an external troupe (a so-called "many-to-many" call), results of operations on
objects of the server troupe are retained by the callees; these results are associated with call
sequence numbers, and are returned when subsequent calls by the replicas of the caller troupe
with the same sequence numbers are encountered, thus avoiding the inconsistencies possible with
idemexecution on external objects. Concurrency control is by majority voting. Thus, if a
partition does not have a majority of troupe members, invocations will not be able to proceed.

B -25-

6.2.5 The HOPS Project The Honeywell Object Programming System (HOPS) [Hone86a] under
development at Honeywell, Inc., has research goals similar to those of our methodology research.
The stated goals of the HOPS project are:

* to alleviate what is seen as a lack of experience in the field of distributed systems in
implementing mechanisms which perform failure detection, failure recovery, and resource
reconfiguration;

* to provide programming support for developing fault-tolerant distributed applications; and

• to assess the actual benefits and costs of such mechanisms in terms of performance,
reliability, and availability.

HOPS consists of an implementation language derived from Modula-2 together with a distributed
runtime support system. The language requires that HOPS objects (or HOPjects) be specified in
three parts: an interface specification, a body (or implementation specification), and a fault
tolerance specification. In the latter, the programmer may specify attributes and policies relating
to recovery, concurrency control, and replication which are to be used for that object, thus giving
the programmer a choice among several mechanisms provided by HOPS in each of these areas.
The distributed runtime system (together with the underlying host operating system) provides
facilities for naming and addressing objects, communication, failure detection and recovery, local
and distributed transaction management, concurrency control, recovery, and replication. HOPS is
currently being implemented on a network of Sun-3 workstations under the Sun version of Unix
4.2.

Mechanisms for achieving fault tolerance in HOPS include the distributed recovery block (DRB)
mechanism and distributed conversations. (The recovery block and conversation mechanisms are
described in detail in a book by Anderson and Lee [Ande8la] as well as in the HOPS report cited
above.) Basically, the combination of the DRB and conversation mechanisms provide fault
tolerance by what is essentially "software modular redundancy." Processes at two or more nodes
execute one of a set of differing sections of code (called try blocks) which implement the same
specified function; the results of these try blocks must pass the same acceptance test (possibly
with majority voting), or the participating processes are rolled back to a checkpoint (called a
recovery line) and retry the computation with their alternate try blocks. Thus, both fail-stop and
some Byzantine-style failures may be detected and tolerated by this scheme.

6.2.6 General Quorum Consensus and Avalon Herlihy's work on General Quorum Consensus
[Herl84a] concerns the extension of quorum intersection methods to take advantage of the
semantic properties of abstract data types. Previously, work on quorum methods-mostly in the
database area-has been limited to a simple read/write model of operations. Herlihy's extensions
allow the selection of optimal quorums for each operation of an abstract data type based on the
semantics of that operation and its interaction with the other operations of the data type.

Herlihy's method is based on the analysis of the algebraic structure of abstract data types. This
entails the construction of a "quorum intersection graph," each node of which represents an
operation of the data type, and each edge of which is directed from the node representing an
operation 01 to the node representing operation 02, where each quorum of 02 is required to
intersect each quorum of 01. From the quorum intersection graph, optimal quorums for each
operation may be calculated, given the number of replicas of the data, and the desired availability
of each operation in relation to the other operations of the data type.

Herlihy shows that his method can enhance the concurrency of operations on replicated data over
that obtained from a read/write model of operations. He also claims advantages for his methods
in the support of on-the-fly reconfiguration of replicated data, and in enhancing the availability of

B -26-

the data in the presence of network partitions.

More recently, Herlihy has developed two new methods for integrating concurrency control and
recovery for abstract data types, called Consensus Locking and Consensus Scheduling. In these
schemes, Herlihy requires that the quorum intersection relation and the lock conflict relation (the
complement of the lock compatibility relation) for an object satisfy a common serial dependency
relation on that object; he notes that, in practice, the lock conflict and quorum dependency
relations will be the same [Her185a]. A detailed comparison of Consensus Locking is presented
in [Wilk87a].

A third scheme, called Layered Consensus Locking, extends the Consensus Locking method by
associating a level with each activity in the system [Herl85b]. Activities at a higher level are
serialized after activities at a lower level. If an activity executing at a given level is unable to
make progress after a failure with its current quorum assignment, it may restart at a higher level
and switch to another quorum assignment. Each initial quorum for an invocation at level n is
required to intersect with each final quorum for an event at levels <= n.

Herlihy and Wing recently have been developing a set of linguistic features, called Avalon, for
support of transaction processing [Her187a]. Avalon is intended to be implemented as extensions
to pre-existing languages such as Ada and C++, and is built on the Camelot distributed system
developed at CMU. Avalon provides support for action event handling resembling that provided
by Aeolus, as described in Section 2. Avalon also provides support for testing serialization orders
dynamically.

7. Conclusions and Future Directions

In this paper, methods of achieving resilience and availability in the Clouds system have been
examined. In the course of this work, we have designed a systems programming language
providing access to the Clouds features of objects and actions, features which-used in
conjunction with the Aeolus runtime support--provide powerful support for resilience of data
and computations. Although automatic support for resilient objects-the paradigm provided by
other systems with goals similar to those of Clouds--is provided as an option in Aeolus, facilities
are also provided that allow the programmer to specify resilience mechanisms more appropriate
to the semantics of the object when desirable.

We have taken a similar approach in designing a scheme, Distributed Locking, for supporting
high availability of Clouds objects. Most distributed system projects providing support for
replication assume a certain policy for replication control, usually quorum consensus. In the
course of recent research, several algorithms for replication control displaying availability
properties more desirable than those of other algorithms in some situations have been proposed.
Thus, it seemed advisable to provide the capability of supporting several different policies for
replication control rather than assuming any one policy. Predefined policies may be accessed as
defaults if the programmer so desires; however, since a replication control scheme other than one
of those foreseen as a pre-programmed policy may prove more appropriate to the semantics of a
given object, our scheme also allows the programmer to develop new policies using the same
library of support primitives used to develop the default policies.

7.1 Performance of Distributed Locking

We consider the Distributed Locking mechanism in the form described in this paper to be a tool
for research into replication techniques rather than a production system for real-world
applications. However, it may be instructive to estimate the performance of the mechanism in a
sample application in order to demonstrate how such estimates may be derived in other cases;

B-27-

these derivations would be useful primarily for comparison of different replication techniques.
As a sample application, we assume a replicated object of degree three, each replica having a
permanent storage area consisting of ten pages, and using the quorum consensus handlers (as
described in Section 5) for replication control. For simplicity, we also assume that the action
being performed on the replicated object consists of an operation invocation that does not visit
other objects, and that this operation causes the entire permanent storage area to be shadowed (the
worst case).

The two-phase commit protocol in Kenley's action management design [Ken186a] requires a total
of four message/acknowledgment pairs per site visited by an action. In Phase I (the Prepare
phase), the coordinating site must send each visited site a prepare message; if all goes well, each
visited site responds with a prepared message indicating success. In Phase II (the Completion
phase), if all visited sites have responded positively to the prepare message, the coordinator sends
a commit message to each visited site; if commit is successful, each visited site responds with a
commited message.

In the Clouds prototype, a message/acknowledgement pair for a message of maximum size 1.5
Kbytes requires approximately thirty milliseconds [Stri88a]. (The network driver has not yet
been examined for possible performance improvements.) Thus, the messaging overhead of an
action commit is 120 ms per site, to which must be added 60 ms for the action manager to write a
commit log at the coordinating site.

Timings for writing to stable storage in the Clouds prototype have been measured by Pitts
[Pitt86a]. To install the shadow version, there is a constant overhead of approximately 120 ms;
there is also a cost per page of the shadow set which ranges between 25 ms (if the write is
sequential and does not require a seek) and 51 ms (if the write is random). (These figures are
based on a driver for a relatively small, slow disk; a driver for a much faster disk has recently
been developed, and should yield much better performance figures, perhaps one-third or better of
those of the slow disk.)

If a communications environment is assumed that does not allow broadcast, then messages must
be sent separately by action management to each replica of an object touched by an action to
perform a commit. If the quorum consensus protocol is used, separate messages must also be
sent to each replica to transmit the shadow set of the coordinating site (p-cohort in the
terminology of Section 5) to the other replicas (s-cohorts); a maximum of three 512-byte pages
may be transmitted per message. However, stable storage processing may be done concurrently
at each replica once the shadow set is transmitted. Let R represent the degree of replication of the
invoked object, and P be the number of pages of permanent storage in the object. Then, for a
non-broadcast environment, the overhead of the quorum consensus copy event, i.e., the time
required to commit the simple action invocation described above on a replicated object, is given
by:

120R+60 + 3(rP/J (R-l) + 51P+120

where the first term represents the contribution by action management overhead, the second term
the time required to transmit the shadow set to the s-cohorts (excluding the p-cohort), and the
third term the time required to write the shadow set to stable storage at each replica (assuming the
worst case in which all writes are random); all constants are in milliseconds. For the sample
application described above (where R=3 and P=10), a commit of the simple action would require
approximately 1290 ms.

B -28-

In the Clouds prototype, the action management messages as well as the shadow sets may be
broadcast to the replicas, thus eliminating the need for sequential messages to each replica. In
this environment, the overhead of the copy event reduces to:

120+60 + 3C(P/- + 51P+120

and the copy event of the sample application would require approximately 870 ms in the worst
case. (If the estimates given above for the performance of the faster disk are assumed, the
overhead becomes approximately 510 ms.) Note that this expression does not depend R, the
number of replicas. The expression is indeed close to the overhead involved in committing a
single-site object on a different site than the coordinator for the action; the expression for the
single-site case does not include the second term (the overhead of broadcasting the shadow set to
the s-cohorts). The time to commit the single-site object is thus approximately 750 ms for the
slow disk in the worst case. If all writes on the slow disk were sequential (perhaps a more normal
case), the overheads would be 610 ms for the replicated object vs. 490 ms for the single-site
object.

A similar analysis may be performed of the additional activity required during the lock event
handling. Considering the handler for quorum consensus, the worst case occurs when all replicas
are available to be locked (requiring R-1 messages to perform the locking), and when the latest
version must be copied to all s-cohorts (requiring [P/3(R-1) messages). The overhead for the
sample application in this worst case would thus be approximately 300 ms. If the state is up-to-
date at all cohorts at the time of the lock event, however, the overhead would reduce to just
that involved for the locking messages, in this case 60 ms.

7.2 Current Status

The first prototype of the Clouds operating system has been implemented and is operational. This
version is referred to Clouds v.1. This is being used as an experimental testbed by the
implementors. Results of performance tests with this prototype are available in other
publications on Clouds [Spaf86a,Pitt86a], and are summarized in [Dasg88a]. The experience
with this version has taught us that the approach is viable. It also taught us how to do it better.

The lessons learned from this implementation are being used to redesign the kernel and build a
new prototype. The basic system paradigm, the semantics of objects, and the goals of the project
remain unchanged and v.2. will be identical to v. 1. in this respect.

The structure of Clouds v.2. is different. The operating system will consist of a minimal kernel
called Ra. Ra will support the basic function of the system, that is location independent object
invocation. The operating system will be built on top of the Ra kernel using system level objects
to provide systems services (user object management, synchronization, naming, atomicity and so
on).

The Ra implementation is now in progress. The action management subsystem, the design of
which is described in Kenley's thesis [Kenl86a], is being redesigned to work with Ra. A
compiler and runtime system for the Aeolus language have been implemented in a Pascal variant
(with some C and assembler in the runtime system); the compiler is being rewritten in Aeolus for
portability purposes. Implementation of Distributed Locking will be possible once the redesigned
action management subsystem is in place, as the interfaces to action management frorn Aeolus
already exist.

B -29-

7.3 Future Directions

11e version of the Distributed Locking scheme described in this paper is based on the polic:es o;"
lock-based synchronization and stable storage-based recovery, implemented by the action
management and storage management subsystems of Clouds, respectively. As mentioned in
Section 2, the Clouds kernel is designed so that these subsystems may be replaced with others
implementing different policies. We are currently considering the effects on the DL mechanism
of the replacement of locks with timestamp-based synchronization, and the replacement of
shadowed stable storage with log-based recovery. We anticipate that these changes will require
additions to the library of primitives supporting DL.

In addition, we are considering the effects on DL of relaxing the fail-stop assumption. This will
require primitives supporting the reconciliation of replica states which have diverged via
operating in separate partitions. These primitives may be used in conjunction with the
reiniaalization object event described in Section 2.

B -30-

REFERENCES

[Aham87a] Ahamad, M., P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes. "Fault-Tolerant
Computing in Object Based Distributed Operating Systems." PROCEEDINGS OF
THE SIXTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE
SYSTEMS (IEEE Computer Society), Williamsburg, VA (March 1987): 115-125.

[Aham87b] Ahamad, M. and P. Dasgupta. "Parallel Execution Threads: An Approach to
Fault-Tolerant Actions." TECHNICAL REPORT GIT-Ics-87/16, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA,
March 1987.

[Allc82a] Allchin, J. E. and M. S. McKendry. "Object-Based Synchronization and
Recovery." TECHNICAL REPORT GIT-ICS-82/15, School of Information and
Computer Science, Georgia Institute of Technology, Atlanta, GA, 1982.

[Allc83a] Allchin, J. E. and M. S. McKendry. "Synchronization and Recovery of Actions."
PROCEEDINGS OF THE SECOND SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED
COMPUTING (ACM SIGACT/SIGOPS), Montreal (August 1983).

[Allc83b Allchin, J. E. "An Architecture for Reliable Decentralized Systems." PH.D.
DISS., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1983. (Also released as technical report GIT-ICS-
83/23.)

[Alme83a] Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe. "The Eden System: A
Technical Review." TECHNICAL REPORT 83-10-05, University of Washington
Department of Computer Science, October 1983.

[Ande8la] Anderson, T. and P. A. Lee. Fault Tolerance, Principles and Practice.
Englewood Cliffs, NJ: Prentice-Hall International, 1981.

[Bem87a] Bernstein, P. A., V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Reading, MA: Addison-Wesley, 1987.

[Birm84a] Birman, K. P., T. A. Joseph, T. Raeuchle, and A. El-Abbadi. "Implementing
Fault-Tolerant Distributed Objects." PROCEEDINGS OF THE FOURTH SYMPOSIUM

ON RELIABILITY IN DISTRIBUTED SOFTWARE AND DATABASE SYSTEMS, Silver
Spring, MD (October 1984): 124-133.

[Birm85a] Birman, K. P. "Replication and Fault-Tolerance in the ISIS System."
PROCEEDINGS OF THE TENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES
(ACM SIGOPS), Orcas Island, Washington (December 1985). (Also released as
technical report TR 85-668.)

[Birm87a] Birman, K. P. and T. A. Joseph. "Exploiting Virtual Synchrony in Distributed
Systems." TECHNICAL REPORT TR 87-811. Department of Computer Science,
Cornell University, Ithaca, NY, February 1987.

(Blac86b] Black, A., N. Hutchinson, E. Jul, and H. Levy. "Object Structure in the Emerald
System." TECHNICAL REPORT 86-04-03, Department of Computer Science,
University of Washington, Seattle, WA, April 1986.

[Blac87a] Black, A., N. Hutchinson, E. Jul, H. Levy, and L. Carter. "Distribution and
Abstract Types in Emerald." TRANSACTIONS ON SOFTWARE ENGINIi./ //VG (IEEE)

B -31-

13, no. 1 (January 1987). (Also available as University of Washington Technical
Report 85-08-05.)

[Blac86a] Black, A. P., E. D. Lazowska, J. D. Noe, and J. Sanislo. "The Eden Project: A
Final Report." TE NICAL REPORT 86-11-01, Department of Computer Science,
University of Washington, Seattle, WA, 1986.

[Coop84a] Cooper, E. "Circus: A Replicated Procedure Call Facility." PROCEEDINGS OF
THE FOURTH SYMPOSIUM ON REIABILrTY IN DISTRIBUTED SOFTWARE AND
DATABASE SYSTEMS, Silver Spring, MD (October 1984): 11-24.

[Coop85a] Cooper, E. "Replicated Distributed Programs." PROCEEDINGS OF THE TFNTH
SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS), Orcas Island,
WA (December 1985): 63-78. (Available as Operating Systems Review 19, no. 5.)

[Dasg88aJ Dasgupta, P., R. J. LeBlanc, and W. F. Appelbe. "The Clouds Distributed
Operating System: Functional Description, Implementation Details, and Related
Work." PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMS (IEEE Computer Society), San Jose, CA (June
1988): 2-9. (Also available as Technical Report G1T-ICS-87/28.)

[E1-A85a] EI-Abbadi, A., D. Skeen, and F. Cristian. "An Efficient, Fault-Tolerant Protocol
for Replicated Data Management" PROCEEDINGS OF THE FOURTH SYMPOSIUM
ON PRINCIPLES OF DATABASE SYSTEMS (ACM SIGACT-SIGMOD) (March 1985).

[EI-A87a] El-Abbadi, A. "A Paradigm for Concurrency Control Protocols." PH.D. DIss.,
Department of Computer Science, Cornell University, Ithaca, NY, 1987.

[Giff79a] Gifford, D. K. "Weighted Voting for Replicated Data." PROCEEDINGS OF THE
SEVENTH SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES (ACM SIGOPS),
Pacific Grove, CA (December 1979).

[Good83a] Goodman, N., D. Skeen, A. Chan, U. Dayal, R. Fox, and D. Ries. "A Recovery
Algorithm for a Distributed Database System." PROCEEDINGS OF THE SECOND
SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS (ACM SIGACT-SIGMOD),
Atlanta, GA (March 1983).

[Grei86a] Greif, I., R. Seliger, and W. Weihl. "Atomic Data Abstractions in a Distributed
Collaborative Editing System." CONFERENCE RECORD OF THE THIRTEENTH
SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES (ACM
SIGACT/SIGPLAN), St. Petersburg Beach, FL (January 1986). (Extended
Abstract.)

[Herl84a] Herlihy, M. "Replication Methods for Abstract Data Types." PH.D. Diss.,
Laboratory for Computer Science, Massachussetts Institute of Technology,
Cambridge, MA, May 1984. (Also released as Technical Report MIT/LCS/TR-
319.)

[Herl85a] Herlihy, M. "Atomicity vs. Availability: Concurrency Control for Replicated
Data." TECHNICAL REPORT CMU-CS-85-108, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA, February 1985.

[Her185b] Herlihy, M. "Using Type Information to Enhance the Availability of Partitioned
Data." TECHNICAL REPORT CMU-CS-85-119, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA, April 1985.

B -32-

[Herl87a] Herlihy, M. P. and J. M. Wing. "Avalon: Language Support for Reliable
Distributed Systems." PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL
SYMPOSIUM ON FAULT-TOLEP-4.r COMPUTING, Pittsburgh, PA (July 1987). (Also
available as Technical Report CMU-CS-86-167.)

[Hore86a] Honeywell, Inc. "Fault Tolerant Distributed Systems." INTERIM SCIENTIFIC
REPORT, Computer Sciences Center, Honeywell Inc., Golden Valley, MN,
November 1986. (RADC Contract No. F30602-85-C-0300.)

[Jose85a] Joseph, T. A. "Low-Cost Management of Replicated Data." PH.D. DIss.,
Department of Computer Science, Cornell University, Ithaca, NY, November
1985. (Also released as Technical Report TR 85-7 12.)

[Jose86a] Joseph, T. A. and K. P. Birman. "Low Cost Management of Replicated Data in
Fault-Tolerant Distributed Systems." TRANSACTIONS ON COMPUTER SYSTEMS
(ACM) 4, no. 1 (Febuary 1986): 54-70.

[Kenl86a] Kenley, G. G. "An Action Management System for a Distributed Operating
System." M.S. THEsIs, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as technical report
GIT-ICS-86/01.)

[LeB185a] LeBlanc, R. J. and C. T. Wilkes. "Systems Programming with Objects and
Actions." PROCEEDINGS OF THE FFTH INTERNATJONAL CONFERFNCE ON
DISTRIBUTED COMPUTING SYSTEMS, Denver (July 1985). (Also released, in
expanded form, as technical report GIT-ICS-85/03.)

[LeLa78a] LeLann, G. "Algorithms for Distributed Data-Sharing Systems Which Use
Tickets." PROCEEDINGS OF THE THIRD BERKELEY WORKSHOP ON DISTRIBUTED
DATA MANAGEMENT AND COMPUTER NETWORKS, Berkeley, CA (August 1978).

[Lisk83a] Liskov, B. and R. Scheifler. "Guardians and Actions: Linguistic Support for
Robust Distribu:ed Programs." TRANSACTIONS ON PROGRAMMING LANGUAGES
AND SYSTEMS (ACM) 5, no. 3 (July 1983).

[Lisk84a] Liskov, B. "Overview of the Argus Language and System." PROGRAMMING
METHODOLOGY GROUP MEMO 40, Laboratory for Computer Science,
Massachussetts Institute of Technology, Cambridge, MA, February 1984.

[Lisk86a] Liskov, B. and R. Ladin. "Highly-Available Distributed Services and Fault-
Tolerant Distributed Garbage Collection." PROGRAMMING METHODOLOGY
GROUP MEMO 48, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, May 1986.

[Lisk87a] Liskov, B. and others. "Argus Reference Manual." PROGRAMMING
METHODOLOGY GROUP MEMO NO. 54, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, March 1987.

[Lisk87b] Liskov, B. "Highly-Available Distributed Services." PROGRAMMING
METHODOLOGY GROUP MEMO 52, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, February 1987.

[Long87a] Long, D. D. E. and J.-F. Paris. "On Improving the Availability of Replicated
Files." PROCEEbINGS OF THE SIXTH SYMPOSIUM ON RELIABILITY IN DISTRIBUTED
SOFT"WARE AND DATABASE SYSTEMS (IEEE Computer Society), Williamsburg, VA
(March 1987): 77-83.

B-33-

[McKe85a] McKendry, M. S. "Ordering Actions for Visibility." TRANSACTIONS ON
SOF)wARE ENGINEERING (IEEE) 11, no. 6 (June 1985). (Also released as technical
report Uri -ICS-84/05.)

[Noe85a] Noe, J. D., A. B. Proudfoot, and C. Pu. "Replication in Distributed Systems: The
Eden Experience." TECHNICAL REPORT TR-85-08-06, Department of Computer
Science, University of Washington, Seattle, WA, September 1985.

[Pitt86a] Pitts, D. V. "Storage Management for a Reliable Decentralized Operating
System." PH.D. DISS., School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1986. (Also released as Technical Report
GIT-ICS-86/21.)

[Pitt88a] Pitts, D. V. and P. Dasgupta. "Object Memory and Storage Management in the
Clouds Kernel." PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON
DISTRIBUTED COMPUTING SYSTEMWS (IEEE Computer Society), San Jose, CA (June
1988): 10-17.

[Prou85a] Proudfoot, A. B. "Replects: Data Replication in the Eden System." M.S. THESIS,
Department of Computer Science, University of Washington, Seattle, WA,
December 1985. (Also released as University of Washington Technical Report
TR-85-12-04.)

[Sch183a] Schlichting, R. D. and F. B. Schneider. "An Approach to Designing Fault-
Tolerant Systems." TRANSACTIONS ON COMPUTER SYSTEMS (ACM) 1, no. 3
(August 1983): 222-238.

[Skee85a] Skeen, D. "Determining the Last Process to Fail." TRANSACTION ON COMPUTER
SYSTEMS (ACM) 3, no. 1 (February 1985): 15-30.

[Spaf86a] Spafford, E. H. "Kernel Structures for a Distributed Operating System." PH.D.
DISS., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1986. (Also released as technical report GIT-ICS-
86/16..)

[Ston79a] Stonebreaker, M. "Concurrency Control and Consistency of Multiple Copies of
Data in Distributed INGRES." TRANSACTIONS ON SOFTWARE ENGINEERING
(IEEE) 5, no. 3 (May 1979).

[Stri88a] Strickland, H. "Networking Support for a Distributed Operating System." M.S.
THESIS, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1988. (In progress.)

[Thom79a] Thomas, R. H. "A Majority Consensus Approach to Concurrency Control for
Multiple-Copy Databases." TRANSACTIONS ON DATABASE SYSTEMS (ACM) 4, no. 2
(June 1979).

[Wcih83a] Weihi, W. and B. Liskov. "Specification and Implementation of Resilient Atomic
Data Types." SYMPOSIUM ON PROGRAMMING LANGUAGE ISSUES IN SOFIWARE
SYSTEMS (June 1983).

[Wilk85a] Wilkes, C. T. "Preliminary Aeolus Reference Manual." TECHNICAL REPORT
Grr-Ics-85/07, School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1985. (Last Revision: 17 March 1986.)

[Wilk86a] Wilkes, C. T. and R. J. LeBlanc. "Rationale for the Design of Aeolus: A Systems

B-34-

Programming Language for an Action/Object System." PROCEEDINGS OF TIE
1996 INTERVATIONAL CONFERENCE ON COMPUTER LANGUAGES (IEEE Computer
Society), Miami, FL (October 1986): 107-122. (Also available as Technical
Report GIT-ICS-86/12.)

[Wilk87a] Wilkes, C. T. "Programming Methodologies for Resilience and Availability."
PH.D. DISS., School of Information and Computer Science, Georgia Institute of
Technology, Atlanta, GA, 1987. (Also available as Technical Report GIT-ICS-
87/32.)

[Wrig84a] Wright, D. D. "Managing Distributed Databases in Partitioned Networks." PH.D.
DISS., Department of Computer Science, Cornell University, Ithaca, NY, January
1984. (Also available as Cornell University Technical Report 83-572.)

B -35-

Appendix A

In this appendix, the Aeolus definition part for a resilient symbol table object is presented. This
example is used in Section 4.

definition of recoverable object symtab
(name type : type, value_type : type) is

Single-copy symbol table object using the Aeolus/Clouds lock
mechanisms for synchronization. The definition part
contains specifications of public constants, types, and
operations defined by this object. When compiled, it
produces a symbol table file which may be imported by other
objects using this object in their implementations.

operations

procedure insert (name : nametype
value : valuetype
error : out boolean) modifies

The insert operation places an entry into the
symbol table. error is set if an entry with the
same name already exists.

procedure delete (name : nametype
error : out boolean) modifies

If the delete operation finds an entry with the
given name, it removes the entry from the symbol table
and frees its storage space.

procedure lookup (name : name_type
error : out boolean

returns valuetype examines
The lookup operation tries to locate the entry with
the given name and returns its value if it succeeds.
error is set if the entry is not in the table.

procedure quicklist () examines
The quick list operation provides a quick (dirty)
listing of all names currently in the symbol table.

procedure exact-list () examines
The exactlist operation provides a listing of the
exact state of the symbol table at a given point in time.
To do this, it locks the whole symbol table, thereby
excluding any changes during preparation of the listing.

I Thus, although exact-list, lookup, and
I quickjist operations may execute concurrently, and

insert and delete operations which access
different hash buckets may also execute concurrently,
insert and delete operations must block on

' exactlist operations.

end definition.

B-36-

Appendix B

In this appendix, the Aeolus definition part serving as the user interface to the Distributed
Locking primitives is presented. This interface is discussed in Section 5.

definition of pseudo object DistLock is

Interfaces to primitives provided for support of the
Distributed Locking mechanism. This pseudo-object is
imported automatically by every availspec, and is not
available for use by other compilands.

type replica_number is new unsigned
A replicanumber 4- used to name an individual replica of a
group. The naming scheme used here is the 'horizontal''
method as described in Chapter VII of this dissertation.
The replica.number is concatenated by the system to the
capability of the object to which the invoking availspec
belongs to form an extended capability as defined by the
horizontal scheme.

type versionnumber is new longuns
A version number is used to compare the currency of
the states of replicas. The version number of an object is
incremented whenever an invocation is performed on it, or
when the state of the objected is updated by use of one of

I the designated operations described below.

operations

procedure lock_replica (rep replica_number
ver out version-number

returns boolean modifies
The lockjreplica operation obtains the
currently-requested lock at the replica denoted by rep.

, This operation should be invoked only within a lock event
handler. The lock variable, domain value, and mode
requested are obtained from the context of the lock
event which caused the invocation of the handler.
The replica denoted by rep is added to a list of the
replicas touched by the current action.

I The version number of the state of rep is returned
I in the Out parameter ver.
, If lockreplica is unable to obtain the lock on
I rep, or if the requested lock is already held
I at rep by the current action, the operation returns
FALSE, otherwise TRUE.

B -37-

procedure invokereplica (rep : replica-number
returns boolean modifies

The invOkerepliCa operation causes the current operation
I to be executed at the replica denoted by rep. This
operation should be invoked only within a Copy event
handler. The operation number and other parameters are
obtained from the context of the lock which caused the
invocation of the handler. The version number of rep
is set to the value of that of the invoking object.
This operation is used for implementing state copying by
idemexecution. If the invocation on rep is
unsuccessful, the operation returns FALSE, otherwise
TRUE.

procedure broadcastshadows () returns boolean modifies
The broadCaSt_shadow operation causes the ''shadow set''
of the permanent state of the current action to be

1 broadcast to all replicas at which locks were obtained by
the current action via the lockreplica operation.
The version numbers of the locked replicas are updated
to equal that of the invoking object. This
operation should be invoked only within a Copy event
handler. This operation is used for implementing state
copying by cloning using shadows. If all locked
replicas successfully receive the shadow set, the
operation returns TRUE, otherwise FALSE.

procedure get-state (rep : replica-number
returns boolean modifies

The ge state operation causes the state of the
replica denoted by rep to be transmitted to the
current object. The state is installed at the current
object, and its version number set to that of rep.

, If the transmission or installation fails, the operation
returns FALSE, otherwise TRUE.

procedure send state (rep : replica_number
returns boolean modifies

I The sendstate operation causes the state of the
current object to be transmitted to the replica denoted

I by rep. The state is installed at rep, and
its version number set to that of the current object. If

I the transmission or installation fails, the operation
I returns FALSE, otherwise TRUE.

B -38-

procedure invokeacceptor (rep : replicanumber
state : address
len : longuns) modifies

The invokeacceptor operation causes the invocation
of the accept event handler at the replica denoted by
rep. The information the address of which is given by
state and which is of length len bytes is copied to the
environment of the accept handler at rep. This operation
may be used in a Copy event handler to implement state
copying by cloning using logs, or in a reinit event

I handler to implement state reconciliation strategies.

procedure degree () returns replica number examines
The degree operation returns the total number of
replicas of the current object including itself.

procedure myreplica () returns replica_number examines
The myreplica operation returns the replica number of
the current object.

procedure my-version () returns versionnumber examines
The rnyv ersion operation returns the version number of
the current object's state.

procedure quorumsize () returns replicanumber examines
The quom_size operation returns the minimum size of
a quorum for the currently-requested lock mode.

procedure currentlylocked () returns replicanumber
I The currently_locked operation returns the number of
replicas on which the currently-requested lock mode has
been obtained, including the current object.

end definition. ! DistLock

APPENDIX C

The Clouds Distributed Operating System: t
Functional Description,
Implementation Details

and
Related Work.

Partha Dasgupta, Richard J. LeBlanc Jr., William F. Appelbe

Technical Report: GIT-ICS-87/42

Abstract

Clouds is an operating system in a novel class of distributed operating systems providing the integra-
tion, reliability and structure which makes a distributed computer system meet its hardware potential.
Clouds is designed to run on a set of general purpose computers that are connected via a medium-to-
high speed local area network. The structure of Clouds promotes transparency, support for advanced
programming paradigms, and integration of resource management, as well as a fair degree of autonomy
at each site.

The design criteria for Clouds include integration of resources through location transparency; support
for various types of atomic operations, including conventional transactions; advanced support for
achieving fault tolerance, provisions for dynamic reconfiguration and an object based system architec-
ture. The implementation has been tailored to be simple, efficient and adaptable.

The system structuring paradigm chosen for the Clouds operating system, after substantial research, is
an object/thread model, with facilities for atomic operations. All instances of services, programs and
data in Clouds are are encapsulated in objects. The concept of persistent objects does away with the
need for file systems, and replaces it with a more powerful concept, namely the object system. Con-
currency control, atomicity and recovery are handled within objects.

In this paper, we provide a functional description of the system. We describe the preliminary implemen-
tation and show the modifications that are in progress for the next implementation. We present an over-
view of the current research results as well as directions for future efforts.

" This research was partially supported by NASA under contract number NAG-1-430, and by NSF under contract numbers DCS-

8316590 and CCR-8619886.

c-I

The Clouds Distributed Operating System
Functional Description,
Implementation Details

and
Related Work.

Partha Dasgupta, Richard J. LeBlanc Jr., William F. Appelbe
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

1. Introduction

Clouds is a distributed operating system under development. The goal of the Clouds
project is to develop an instance of a class of distributed operating systems that provide the
integration, reliability and structure that is necessary to make a distributed computing system
effective.

Clouds is designed to run on a set of general purpose computers (uniprocessors or mul-
tiprocessors) that are connected via a medium-to-high speed local area network. The major
design objectives for Clouds are:

* Integration of resources through cooperation and location transparency.

" Support for atomicity, transaction processing, and the ability to achieve fault tolerance
(if needed).

* Efficient design and implementation.

" Simple and uniform interfaces for distributed processing.

The paradigm used for defining and implementing the software structure of the Clouds
system, chosen after substantial research is an object/thread model. This model provides
threads to support computation and objects to support an abstraction of storage. (These con-
cepts are defined in sections 2 though 4). This model has been augmented to support atomi-
city of computation to provide support for reliable programs [A183, DaLe85, McA183]. In
this paper, we provide a functional description of the system (sections 2 to 6), some imple-
mentational details (section 7), and discussion of related work (section 9).

1.1. Current Status

The first version of the Clouds operating system has been implemented and is opera-
tional. This version is referred to Clouds v.1. This is being used as an experimental testbed
by the implementors.

Some of the performance figures for Clouds v. I. were:

Local Object Invocations 10 msec
Remote Object Invocations 40 msec

Ckorgia Tech 0ouds Pojet

C-2

Commit of 1 page data 180 msec

The performance of our first verion is poor, due to several factors. The VAX architecture
was not very suitable for implementing objects, and flushing of the translation buffers for
each invocation causes the local invocation to be more expensive than expected. The Ether-
net hardware used, coupled with a non-optimized driver gave us poor performance on round
trip messages and hence large remote invocation times. The disk used in the commit tests
was also exceedingly slow (40msec seek, 25msec/page write.) However, the experience with
this version has taught us that the approach works. It also taught us how to do it better.

The lessons learned from this implementation are being used to red,-sign the kernel and
build a new version. The basic system paradigm, the semantics of objects and threads and
the goals of the project remain unchanged and v.2. will be identical to v.1. in this respect.

The structure of Clouds v.2. is different. The operating system will consist of a minimal
kernel called "Ra". Ra will support the basic function of the system, that is location indepen-
dent object invocatioi,. The operating system will be built on top of the Ra kernel using sys-
tem level objects to provide systems services (user object management, synchronization,
naming, atomicity and so on.)

2. Objects

All data, programs, devices and resources on Clouds are encapsulated in entities called
objects. The only entity recognized by the system, other than an object, is a thread. A
Clouds object, at the lowest level of conception, is a virtual address space. Unlike virtual
address spaces in conventional operating systems, a Clouds object is neither tied to any pro-
cess nor volatile. A Clouds object exists forever (like a file) unless explicitly deleted. As will
be obvious in the following description of objects, Clouds objects are somewhat 'heavy-
weight', that is they are suited for storage and execution of large-grained data and programs.
This is because invocation and storage of object bear some non-trivial overhead.

Every Clouds object is named. The name of an object, also known as its capability, is
unique over the entire distributed system and does not include the location of the object.
That is, the capability-based naming scheme in Clouds creates a uniform, flat system name
space for objects.

An object consists of a named address space and the contents of the address space.
Since it does not contain a process, it is completely passive. Hence, unlike objects in some
object based systems, a Clouds object is not associated with any server process. (The first
system to use passive objects, though in a multiprocessor system was Hydra [Wu74,
WuLe8 1]).

Threads are the active entities in the system, and are used to execute the code in an
object (details in sections 2 and 3). A thread executes in an object by entering it through
one of several entry points, and after the execution is complete the thread leaves the object.
Several threads can simultaneously enter an object and execute concurrently.

Objects have structure. They contain, minimally, a code segment, a data segment and a
mechanism for extending limits of storage allocated to the object. Threads that enter an
object execute in the code segment. The data segment is accessible by the code in the code

GeM Tec clmb P- 1 t

C-3
3

segment, but not by any other object. Thus the object has a wall around it which has some
well-defined gateways, through which activity can come in. Data cannot be transmitted in or
out of the object freely, but Lan be moved as parameters to the code segment entry points.

Clouds objects can be defined by the user or defined by the system. Most objects are
user-defined. Some examples of system-defined objects are device drivers, name-service
handlers, communication systems, systems software, utilities, and so on. The basic kernel
(Ra) is not an object; it is an entity that provides the support for object invocation. A com-
plete Clouds object can contain user-defined code and data; system-defined code and data
that handle synchronization, recovery and commit; a volatile heap for temporary memory
allocation; a permanent heap for allocating memory that will remain permanent as a part of
the data structures in the object; locks; and capabilities to other objects.

Files in conventional systems can be conceived of a special case of a Clouds object.
Thus, Clouds need not support a file system, but uses an object system. This is discussed in
further detail in section 4.

Though Clouds object can be created, deleted and manipulated individually, the operat-
ing system is designed to support a class and instantiation mechanism. An object in the sys-
tem can be an instance of its template. An object of a certain type is created by invoking a
'create' operation on the template of this type. Each template is created by invoking a create
operation on a single template-template, which can create any template, if provided, as argu-
ment, the code and data definitions of the template. The templates, the template-template and
all the instances thereof, are regular Clouds objects, and, as discussed earlier, they exist from
the time of creation, until explicitly deleted.

3. Threads

The only form of activity in the Clouds system is the thread. A thread can be viewed
as a thread of control that executes code in objects, traversing objects as it executes. Threads
can span objects and machine boundaries. In fact, machine boundaries are invisible to the
thread (and hence to the user). Threads are implemented in the Clouds system as lightweight
processes, comprising of a PCB and a stack (but no virtual space). A thread that spans
machine boundaries is implemented by several processes, one per site.

Upon creation, a thread starts up at an entry point of an object. As the thread executes,
it executes code inside an object and manipulates the data inside this object. The code in the
object can contain a procedure call to an operation of another object. When a thread exe-
cutes this call, it temporarily leaves the caller object and enters the called object, and com-
mences execution there. The thread returns to the calXer object after the execution in the
called object terminates. The calls to the entry point of objects are called object invocations.
Object invocations can be nested. The code that is accessible by each entry point is known
as an operation of the object.

A thread executes by processing operations defined inside many objects. Unlike
processes in conventional operating systems, the thread often cross boundaries of virtual
address spaces. Addressing in an address space is, however, limited to that address space,
and thus the thread cannot access any data outside an address space. Control transfer
between address spaces occurs though object invocation, and data transfer between address

rorais Tch Oo.Ss Popct I

C-4

4

spaces occurs through parameters to object invocation.

When a thread executing in an object (or address space) executes a call to another
object, it can provide the called operation with arguments. When the called operation ter-
minates, it can send back result arguments. That is, object invocations may carry parameters
in either direction.

These arguments are strictly data. Note that names (capabilities) are data. They may
not be addresses. This restriction is necessary as the address space of each object may be
disjoint, and an addresses is meaningful only in the context of the appropriate object.
Parameter passing uses the copy-in-copy-out method.

4. The Object/Thread Paradigm

The structure created by a system composed of objects and threads has several interest-
ing properties.

First, all inter-object interfaces are procedural. Object invocations are equivalent to pro-
cedure calls on modules not sharing global data. The modules are permanent. The procedure
calls work across machine boundaries. (Since the objects exists in a global name space, there
is no concept of machine boundaries.) Although local invocations and remote invocations
(also known as remote procedure calls or RPCs) are differentiated by the operating system,
this is transparent to the applications and systems programmers.

Second, the storage mechanism used in the object-based world is quite different from
that used in the conventional operating systems. Conventionally, the file is the storage
medium of choice for data that has to persist, especially since memory is tied to processes
and processes can die and lose all the contents of their memory. However, memory is easier
to manage, more suited for structuring data and essential for processing. The object concept
merges these two views of storage, and creates the permanent virtual space.

For instance, a conventional file is a special case of an object. That is, a file is an
object with operations such as read, write, seek, and so on, defined in it. These operations
transport data in and out of the object through parameters provided to the calls.

Though files can be implemented using objects, the need for having files disappear in
most situations. Programs do not need to store data in file-like entities, since they can keep
the data in the data space in each object, structure appropriately. The need for user-level
naming of files transforms to the need for user-level naming for objects.

Just as Clouds does not have files, it does not provide user-level support for file (or
disk) 1/0. In fact there is no concept of a "disk" or such I/O devices (except user terminals).
The system creates the illusion of a huge virtual memory space that is permanent (non-
volatile), and thus the need for using disk storage from a programmer's point of view, is
eliminated.

Messages are a paradigm of choice in message-based distributed systems. In this case,
like the need for I/O, the need for messages is eliminated. Threads need not communicate
through messages. Thus ports are not supported. This allows a simplified system manage-
ment strategy as the system docs not have to maintain linkage information between threads
and ports.

am& Tec hIOU& It ah

C-5

5

Just as files can be simulated for those in need for them, messages and ports can be
easily simulated by an object consisting of a bounded buffer that implements the send and
receive operations on the buffer. However, we feel that the need for files and messages are
the product of the programming paradigms designed for systems supporting these features,
and these are not necessary structuring tools for programming environments.

A programmer's view of the computing environment created by Clouds is apparent. It
is a simple world of named address spaces (or objects). These object live in computing sys-
tems on a LAN, but the machine boundaries are made transparent, creating a unified object
space. Activity is provided by threads moving around amongst the population of objects
through invocation; and data flow is implemented by parameter passing. The system thus
looks like a set of permanent address spaces which support control flow through them, con-
stituting what we term object memory.

This view of a distributed system does have some pitfalls. However these problems can
be dealt with using simple techniques (implemented by the system), which are outlined
below.

Threads aborting due to errors will leave permanent faulty data in objects they have
modified. Failure of computers will result in similar mishaps. Multiple threads invoking the
same object will cause errors due to race conditions and conflicts. More involved con-
sistency violations may be the results of non-serializable executions. In a large distributed
system, having thousands of objects and dozens of machines, corruption due to failure can-
not be tolerated or easily repaired. The prevention of such situations is achieved through the
use of atomicity at the processing level (not necessarily atomic actions). The following sec-
tion gives a brief overview of the atomicity properties supported by Clouds.

5. Atomicity

The action support is an area where the Clouds v.1. and Clouds v.2. differ.

5.1. Actions in Clouds v.1.

In the first design, Clouds supported atomic actions and nested actions somewhat based
on the model defined by Moss in his thesis [Mo8l]. Clouds v.1. extended Moss's model by
allowing custom tailored synchronization and recovery, as well as interactions between
actions and non-actions.

The synchronization and recovery properties can be localized in objects, on a per object
basis. The synchronization and recovery can be handled by the system (to adhere to Moss's
semantics) or can be tailored by the user and thus provide facilities beyond those allowed by
standard nested transactions. Customization is allowed by labeling of objects as "auto-sync"
or "custom-sync" and "auto-recoverable" and "custom-recoverable".

When an object is "auto-sync" and "auto-recoverable" the system automatically pro-
vides 2-phase locking (at the object level) when threads executing on behalf of actions enter
this object. When the action that touched the object commits, all objects are updated using
the 2-phase commit protocol.

Custom synchronization and recovery can be used by applications for user programmed
concurrency control and recovery. For this purpose the programmer has tools such as locks

Ceor i Tech a m -

C-6
6

with arbitrary compatibilities, recoverable segments and per-action variables. Further details
of this scheme can be found in [Wi87].

5.2. Atomicity in Clouds v.2.

The support for atomicity in Clouds v.2. has is roots in the above scheme, but has been
changed in some respects. The following is a brief outline of the scheme. The actual
methods used are discussed in greater detail in [ChDa87].

Instead of mandating customization of synchronization and recovery for application that
cannot use strict atomicity semantics, the new scheme support a variety of consistency
preserving mechanisms. The threads that execute are are of two kinds, namely s-thread (or
standard threads) and cp-threads (or consistency preserving threads). The s-threads have a
best effort execution scheme and are not provided with any system-level locking or
recovery. The cp-threads on the other hand are supported by locking and recovery schemes,
provided by the system. When a cp-thread executes, all pages it reads are read-locked and
the pages it updates are write-locked. The updated pages are written using a 2-phase commit
mechanism when the cp-thread completes.

The data in the system have an instantaneous version and a stable version. In fact, is
nested threads are used, the data have a stack of versions, the top being the instantaneous
version and the bottm being the stable version. All the threads work on the instantenous
version. The data updated by cp-threads are committed when the cp-thread exits, while the
data touched by the s-threads are committed "eventually", using a best effort semantics.

The cp-threads are allowed to interleave with s-threads, and also the cp-threads can be
used to provide heavyweight as well as lightweight atomicity, using gcp and lcp operations,
described below.

All threads are s-threads when created. The handling of cp-threads are programmed by
the following scheme. All operations in objects in Clouds are tagged with a consistency
label, the labels used are:

* Globally-Consistent (gcp)

" Locally-Consistent (lcp)

* Standard (s)

* Inherited (i)

An object can have any number of different labels on the operations. Also the same
operation may have multiple entry points, labeled at different atomicity levels.

A s-thread executing a gcp or lcp operation converts to a cp-thread. A thread entering a
lcp entry point, commits its updates (inside this object) as soon as it exits the object. This
provides intra-object consistency rather than the inter-object consistency provided by the gcp
operations, and thus is a cheap method of updating one object atomically. Locking and
recovery are automatic.

The standard entry points do not support any locking or recovery. They can make use
of "best-effort" semantics. They can also be used for non-traditional purposes such as peek-
ing at incomplete results of actions (as they are not hindered by locking and visibility rules

Osar&is TMh Onwi. Poct

C-7

7

of actions). Locks are available for synchronizing non-actions, but recovery is not supported.

The other labels as well as combination of these labels in the same object (or in the
same thread) lead to many interesting (as well as dangerous) variations. The complete dis-
cussion of the semantics as well as the implementation is beyond the scope of this paper,
and the reader is referred to [ChDa87]

6. Programming Support

Systems and application programming for Clouds involves programming objects that
implement the desired functionality. These objects can be expressed in any programming
language. The compiler (or the linker) for the language, however, must be modified to gen-
erate the stubs for the various entry points, invocation handler, system call interfaces and the
inclusion of default systems function handling code (such as synchronization and recovery).
Most of Clouds application programming have been done in a pre-processed form of C, that
we call C-weed.

The language Aeolus has been designed to integrate the full set of powerful features
that the Clouds kernel supports. Aeolus currently supports the features of Clouds v.1. but is
being expanded for added functionality of Ra and Clouds v.2. [LeWi85, Wi85, WiLe86].

Aeolus is the first generation language for Clouds. It does not support some of the
features found in object-oriented programming systems such as inheritance and subclassing.
Providing support for these features at the language level is currently under consideration.

7. Enhancements and Planned Features

The above description of Clouds documents the basic features of the distributed kernel
for Clouds. Presently the following enhancement, applications and features are at various
stages of design, implementation and planning.
" An object naming scheme is being developed that creates a hierarchical user naming

strategy (like Unix) that is also highly available and robust (through replicated direc-
tories).

" Unix and Clouds will be inter-operable providing Unix programmers and user with
access to Clouds features and Clouds programmers to use Unix services. Unix machines
will be able to execute remote procedure calls to Clouds object thus gaining access to
all the functionality that Clouds provides. In fact the user interface to Clouds can be
achieved (initially) through Unix shells and tools. Similarly Clouds applications can
make use of the wide variety of programming support tools that are supported by Unix
through a mechanisms that provides Unix service for Clouds computations.

* As mentioned earlier, mechanisms for providing object-oriented programming metho-
dology will be provided at the linguistic level, with enhancements in the kernel that
will provide performance advantages (such as sharing of code in the classes with its
instances).

* Debugging support at the object level, thread level and the invocation level is neces-
sary. Techniques that allow the programmer to get a comprehensive view of the distri-
buted and concurrent execution environment are under development.

,eCx i Tech Pu Rmjwc

C-8

" A probe system that can track object and thread status in the system can provide infor-
mation about failures, loading, deadlocks and software problems is being developed.
This will be used to develop a distributed system monitoring system that will help in
reconfiguration on failure and aid in providing fault tolerance. The probe system will
also be useful in distributed object level debugging [Da86].

* A distributed database that utilizes the object structure of Clouds for elegance atid the
synchronization and recovery support for concurrency control and reliability is being
developed [DaMo86].

* Clouds has been designed as an operating system, that can support fault tolerance com-
puting. The systems that will provide fault tolerance and guarantee progress of compu-
tation and system response in face of partial system failures are being developed. The
techniques include replicated objects, multi-threaded actions, the coupling of the
reconfiguration systems and monitoring systems.

8. Implementation Notes

The implementation of the Clouds operating systems has been based on the following
guidelines:
* The implementation of the system should be suitable for general purpose computers,

connected through common networking hardware. Heterogeneous machines, though not
crucial, should be allowed.

" Since the Clouds functionality is largely based on object invocation, support for cbjects
should be efficient in order to make the system usable. Also, the naming, synchroniza-
tion and recovery systems should be implementable with minimal overhead.

" Since one of the primary aims of Clouds is to provide the substrate for reliable, fault
tolerant computing, the kernel and the operating system should provide adequate sup-
port for implementing fault tolerance.

* The system design should be simple to comprehend and implement.

8.1. Hardware Configuration

Clouds v.1. was built on a three VAX-11/750 computers, connected through an Ether-
net, equipped with RL02 and RA81 disk drives. The user interface was through the Ethernet,
accessible from any Ur..x machine.

Clouds v.2. is being implemented on a set of Sun-3 class machines. The cluster of
Clouds machines are on an Ethernet, and users will access them through workstations run-
ning Clouds as well as Unix workstations.

8.2. Software Configuration and Kernel Structure

The kernel (version 2.) used to support Clouds is called Ra. Ra is a native kernel run-
ning on bare hardware. The kernel is implemented in C for portability, and because the avai-
lability of C source for UNIX kernels simplified the task of developing hardware interfaces
such as device drivers.

The kernel runs on the native machine znd not on top cf a.'y ccnv'entional operating
system for two reasons. Firstly, this approach is efficient. As Clouds does not use much of

!G T& M

C-9
9

the functionality of conventional operating systems (such as file systems), building Clouds
on top of a Unix-like kernel make poor use of the host operating system. Secondly, the
paradigms and the support for synchronization, recovery, shared memory and so on; used in
Clouds are considerably different from the functionality provided by conventional operating
systems, and major changes would be necessary at the kernel level of any operating system
in order to implement Clouds.

The Ra kernel provides support for partitions, segments, virtual spaces, processes and
threads. These are the basic building blocks for Clouds. The partitions provide non-volatile
storage, the segments provide memory storage, which are used to build objects, which in
turn reside in virtual spaces. Processes provide activity which are used to compose threads.
A description of the design of Ra can be found in [BeHuKh87]

8.3. Object Naming and Invocation
The two basic activities inside the Ra kernel are system call handling and object invo-

cations. System call handling is done locally, as in any operating system. The system calls
supported by the Ra kernel include object invocation, memory allocation, process control
and synchronization, and other localized systems functions. Object invocation is a service
provided by the kernel for user threads. The attributes that object invocation satisfy are:

* Location independence.
* Fast, for both local and remote invocations.

* Failed machines should not hamper availability of objects on working sites, from work-
ing sites.

* Moving objects between sites, reassigning disk units and so on should be simple (for
fault tolerance support).

Location independence is achieved through a capability based naming system. Availa-
bility is obtained through decentralization of directory information and a search-and-invoke
strategy coupled with a multicast based object location scheme, designed for efficiency
[AhAm87]. Speed is achieved by implementing the invocation handlers at the lowest level
of the kernel, on the native machine.

8.4. Storage Mangement

The storage management system handles the function required to provide the reliable,
permanent object address spaces. As mentioned earlier, unlike conventional systems, where
virtual address spaces are volatile and short-lived, Clouds virtual spaces contain objects and
are permanent and long lived. The first version of the implementation is detailed in [Pi86].

The storage management system stores the object representations on disk, as an image
of the object space. When an object is invoked, the object is demand paged into its virtual
space as and when necessary. As the invocation updates the object, the updated pages do not
replace the original copy, but have shadow copies on the disk. The permanent copy is
updated only when a commit operation is performed on the object. The storage manager pro-
vides the support to commit an object using the two-phase commit protocol.

Geria Tech Omdo Pro

C-I0

10

9. Comparisons with Related Systems

Clouds is one of the several research projects that are building object-based distributed
environments. Although there are differences between all the approaches, we feel that the
area of distributed operating systems is not mature enough to conclusively argue the
superiority of one approach over the other. In the following paragraphs we document the
major differences between Clouds and some of the better known projects in distributed sys-
tems. (This list is not exhaustive).

One of the major difference between Clouds and some of the systems mentioned below
is in, the implementation of the kernel. Many systems implement the kernel as a Unix pro-
cess , while Clouds is implemented as a native operating system (as are Mach and Alpha).
Clouds is not intended to be an enhancement, or replacement of, the UNIX kernel. Instead,
Clouds provides it different paradigm from that supported by UNIX (e.g., the UNIX para-
digms of 'devices as files', unstructured files, volatile address spaces, pipes, redirection etc.)

9.1. Argus

Argus is a language for describing objects, actions and processes using the concept of a
guardian. The language defines a distributed system to be a set of guardians, each contain-
ing a set of handlers. Guardians are logical sites, and each guardian is located at one site,
though a site may contain several guardians. The handlers are operations that can access data
stored in the guardian. The data types in Argus can be defined to be atomic, and atomic data
types changed by actions are updated atomically when the action terminates [WeLi83,
LiSc83]. The support for Argus is built on top of Unix, and provides all the facilities of the
Argus language [Li87I.

Some of the similarities between Argus and Clouds are in the semantics of nested
actions. Both use the nested action semantics and locking semantics that are derived from
Moss. This includes conditional commit and lock inheritance. However the consistency
preserving mechanisms in Clouds have moved away from Moss's action semantics, substan-
tially, though retaining the nested action semantics as a subset. Also the guardians and
handlers in Argus have somewhat more than cosmetic similarities to objects in Clouds, as
the design of Clouds was influenced by Argus.

The differences include the implementation strategies, programming support and sup-
port for reliability. The scheme of permanent virtual spaces provided by passive objects is a
major difference. As mentioned earlier, Argus is implemented on top of a modified Unix
environment. This is one of the reasons for the somewhat marginal performance of the
Argus system observed in [GrSeWe86I. The programming support provided by Argus is for
the Argus language. Clouds on the other hand is a general purpose operating system, not tied
to any language. Though Aeolus is the preferred language at present, we have used C exten-
sively for object programming. We have plans to implement more object-oriented languages
for the the Clouds system.

t'he term kernel has been used quite frequently to describe the core service center of a system. However when this service is provided by
a Unix process rather than a resident. interrupt driven monitor, the usage of the term is somewhat counter-intuitve.

Geatw Tech Clndl Prner

C-11

9.2. Eden

Eden is a object-based distributed system, implemented on the Unix operating system at
the University of Washington. Eden objects (called Ejects) use the active object paradigm,
that is each object consists of a process and an address space. An invocation of the object
consists of sending a message to the (server) process in the object, which executes the
requested routine, and returns the results in a reply [Alm83, A1B183, NoPr85].

Since every object in the system needs to have a process servicing it, this could lead to
too many processes. Thus Eden has an active and a passive representation of objects. The
passive representation is the core image of the object stored on the disk. When an object is
invoked, it must be active, thus invoking a passive object involves activating it. A process is
created by 'exec'-ing the core image of the object (frozen earlier), and then performs the
required operation. The activation of passive objects is an expensive operation. Also con-
current invocations of objects are difficult and are handled through multithreaded processes
or coroutines.

The active object paradigm and the Unix-based implementation are some of th, major
differences between Eden and Clouds. Eden also provides support for transaction and repli-
cation objects (called Replects). The transaction support and replication were added after the
basic Eden System was designed and have some limitations due to manner Unix handles disk
I/O.

9.3. Cronus

Cronu is an operating system designed and implemented at BBN Laboratories. Some
of the salient points of Cronus are the intergration of Cronus functions with Unix functions,
the ability of Cronus to handle a wide variety of hardware and the coexistence of Cronus on
a distributed set of machines running Unix, as well as several other host operating systems
[BeRe85, GuDe86, ScTh86].

Like Eden, Cronus uses the active objects. This is necessary to be able to make Cronus
run on top of most host operating systems. Cronus objects are handled by managers. Often
a single manager can handle several objects, by mapping the objects into its address space.
The managers are servers and receive invocation requests through catalogued ports. Any
Unix process on any machine on the network can avail of Cronus services from any
manager, by sending a message to the appropriate manager. By use of canonical data forms,
the machine dependencies of data representations are made transparent. Irrespective of the
machine types, any Unix machine can invoke Cronus objects in a location independent
fashion.

9.4. ISIS
ISIS (version 1) is a distributed operating system, developed at Cornell University, to

support fault tolerant computing. ISIS has been implemented on top of Unix. It uses replica-
tion and checkpointing to achieve failure resilience. If data object is declared to be k-
resilient, the system creates k+l copies of the object. The replicated object invocation is han-
dled by invoking one replica and transmitting the state updates to all replicas. Checkpointing
at each invocation is used to recover from failures [Bi85A, Bi85B].

Go.1a Tech ClIM Pfct

C-12

12

The goals and attributes of ISIS are different from Clouds. ISIS is built on top of some
interesting communication primitives and is not built as a general purpose computing
environment.

9.5. ArchOS and Alpha

Alpha is the kernel for the ArchOS operating system developed by the Archons project
at Carnegie Mellon University. Like Clouds, the Alpha kernel is a native operating system
kernel designed to run on the special hardware called Alpha-nodes. The Alpha kernel uses
passive objects residing in their own virtual spaces, similar to Clouds. ArchOS is designed
for real time applications supporting specialized defense related systems and applications
[Je85, No87].

The key design criteria for ArchOS and Alpha are time critical computations and rather
than reliability. Fault tolerance is handled to an extent using communication protocols. Real
time scheduling has been a major research topic at the Archons project.

9.6. V-System

The V operating system has been developed at Stanford University. V is a compromise
between message-based systems and object-based systems. The basic core of V provides
lightweight processes and a fast communications (message) system. V message semantics are
similar to object invocations in the sense that the messages are synchronous and use the
serd/reply paradigm. The relationship between processes conforms to the client-server para-
digL: A client sends a request to the server, and the client blocks until the server replies
[ChZw83].

V allows multiple processes to reside in the same address space. Data sharing is
through message passing, though shared memory can be implemented through servers
managing bounded buffers. The design goals of V are primarily speed and simplicity. V
does not provide transaction and replication support. These can be implemented, if necessary
at the application level.

The radical difference between V and Clouds is the paradigm used by Clouds.

9.7. Mach

Mach is a distributed operating system under development at Carnegie Mellon. Mach
maintains object-code compatibility with Unix. Mach extends the Unix paradigms by adding
large sparse address spaces, memory mapped files, user provided backing stores, and
memory sharing between tasks. Mach is implemented on a host of processors including mul-
tiprocessors.

The execution environment for a Mach activity is a task. Threads are computation units
that run in a task. A single thread in a task is similar to a Unix process. Ports are communi-
cation channels, supporting messages which are typed collection of data objects. In addition,
Mach supports memory objects, which are collections of data objects managed by a server.

Support for transactions are not built into Mach, but can be layered on top of Mach and
has been implemented by Camelot and Avalon [HeWi87].

Go.& Tech of* m u N H

C-13
13

The approaches used by Mach and Clouds are fundamentally different, as with V and
Clouds.

10. Concluding Remarks

Clouds provides an environment for research in distributed applications. By focusing
on support for advanced programming paradigms, and decentralized, yet integrated, control,
Clouds offers more than 'yet another Unix extension/look-alike'. By providing mechanisms,
rather than policies, for advanced programming paradigms, Clouds provides systems
researchers a adaptable, high-performance, 'workbench' for experimentation in areas such as
distributed databases, distributed computation, and network applications. By adopting 'off
the shelf' hardware, the portability and robustness of Clouds are enhanced. By providing a
'Unix gateway', users can make use of established tools The gateway also relieves Clouds
from the necessity of providing emulating services such as provided by Unix mail and text
processing.

The goal of Clouds has been to build a general purpose distributed computing environ-
ment, suitable for a wide variety of user communities, both within and outside the computer
science community. We are striving to achieve this through a simple model of a distributed
environment with facilities that most users would feel comfortable with. Also we are plan-
ning to experiment with increased usage of the system by making it available to graduate
courses, and hope the feedback and the criticism we receive from a large set of users will
allow us to tailor, enhance and perhaps redesign the system to fit the needs for distributed
computing, and thus give rise to wider usage of distributed systems.

11. Acknowledgements

The authors would like to acknowledge Martin McKendry and Jim Allchin for starting
the project and designing the first version of Clouds. Gene Spafford and Dave Pitts for the
implementation, Jose Bernabeau, Yousef Khalidi and Phil Hutto for their effort.- in making
the kernel usable and for the design of Ra. Also Mustaq Ahamad, Ray Chen, Kishore
Ramachandran and Henry Strickland for their participation in the project.

12. References
[Ac86] Accetta M, eL al. Mach: A New Kernel Foundation for Unix Development, Technical Report, Car-

negie Mellon University.

[AhAm87] M. Ahamad, M. Ammar, J. Bernabeu and M. Y. Khaldi, A Multicast Scheme for Locating Objects
in a Distributed System. Technical Report GIT-ICS-87/)1, School of Information and Computer
Science, Georgia Tech, January 1987.

[Alm83] G. T. Almes, The Evolution of the Eden Invocation Mechanism, Technical Report 83-01-03,
Department of Computer Science, University of Washington, 1983.

[A183] J. E. Allchin, An Architecture for Reliable Decentralized Systems, Ph.D. Diss., School of Informa-
tion and Computer Science, Georgia Institute of Technology, Atlanta, GA, (Also released as techn-
ical report GIT-ICS-83/23,) 1983.

[A1B1831 G. T. Almes, A. P. Black and E. D. Lazowska and J. D. Noe, The Eden System: A Technical
Review, University of Washington Department of Computer Science, Technical Report 83- 10-05
October 1983.

Gs&gia TeM OC1U& pot

C- 14

14

[AIMc82] J. E. Allchin and M. S. McKendry, Object-Based Synchronization and Recovery, Technical Report
GIT-ICS-82/15 School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 1982.

[BeHaKh87]
J. M. Bernabeau Auban, P. W. Hutto and M. Y. A. Khalidi, The Architecture of the Ra Kernel,
Technical Report GIT-ICS-87/35 School of Information and Computer Science, Georgia Institute
of Technology, Atlanta, GA, 1987.

[BeRe85] J. C. Berets, R. A. Mucci and R. E. Schantz, Cronus: A Testbed for Developing Distributed Sys-
tems, October 1985 IEEE Communications Society, IEEE Military Communications Conference.

[Bi85A] K. P. Birman and others, An Overview of the ISIS Project, Distributed Processing Technical Com-
mittee Newsletter, IEEE Computer Society (7,2) October 1985 (Special issue on Reliable Distri-
buted Systems).

[Bi85B] K. P. Birman, Replication and Fault-Tolerance in the ISIS System, ACM SIGOPS, Proceedings of
the Tenth Symposium on Operating Systems Principles, December 1985 Orcas Island, Washington,
(Also released as technical report TR 85-668).

[ChDa87] R. Chen and P. Dasgupta, Consistency-Preserving Threads: Yeat Another Approach to Atomic Pro-
gramming, Technical Report GIT-ICS-87/43 School of Infonna'ofi and Computer Science, Georgia
Institute of Technology, Atlanta, GA, 1987.

[ChZw83I D. R. Cheriton and W. Zwaenepoel, The Distributed V Kernel and its Performance for Diskless
Workstations, Proceedings of the Ninth Symposium on Operating Systems Principles, ACM
SIGOPS, Bretton Woods, NH, October 1983.

[Da86] P. Dasgupta, A Probe-Based Fault Tolerant Scheme for an Object-Based Operating System,
Proceeding of the 1st ACM Conference on Object Oriented Programming Systems, Languages and
Applications. Portland OR. 1986.

[DaLe85] P. Dasgupta, R. LeBlanc and E. Spafford, The Clouds Project: Design and Implementation of a
Fault-Tolerant Distributed Operating System, Technical Report GIT-ICS-85/29, 1985 School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA.

[DaMo86] P. Dasgupta and M. Morsi, An Object-Based Distributed Database System Supported on the
Clouds Operating System, Technical Report GIT-ICS-86/07, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1986.

[GuDe86] R. F. Gurwitz, M. A. Dean and R. E. Schantz, Programming Support in the Cronus Distributed
Operating System, May 1986, Proceedings of the Sixth International Conference on Distributed
Computer Systems, IEEE Computer Society.

[GrSeWe86]
I. Greif, R. Seliger and W. Weihl Atomic Data Abstractions in a Distributed Collaborative Editing
System, (Extended Abstract) Conference Record of the Thirteenth Symposium on Principles of Pro-
gramming Languages, ACM SIGACT/SIGPLAN, January 1986, St. Petersburg Beach, FL.

[HeWi871 M. P. Herlihy and J. M. Wing, Avolon: Language Support for Reliable Distributed SystemT.
Proceedings of the 17th International Symposium on Fault-Tolerant Computing. July 1987.

[Je851 E. D. Jensen et. al. Decentralized System Control, Technical Report RADC-TR-85-199, Carnegie
Mellon University and Rome Air Development Center, April 1985.

[Ke86] G. G. Kenley, An Action Management System for a Distributed Operating System, M.S. Thesis,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986.
(Also released as technical report GIT-ICS-86/01).

[LeWi85] R. J. LeBlanc and C. T. Wilkes, Systems Programming with Objects and Actions, Proceedings of
the Fifth International Conference on Distributed Computing Systems, Denver, July 1985. (Also
released, in expanded form, as technical report GIT-ICS-85/03)

[LiSc83] B. Liskov and R. Scheifler, Guardians and Actions: Linguistic Support for Robust Distributed Pro-
grams, ACM, Transactions on Programming Languages and Systems (53) July 1983.

•i TO& CM& PIIoI i

1-15

15

[Li87] B. Liskov, D. Curtis, P. Johnson and R. Scheifer. Implementation of Argus. Proceedings of the
1 lth ACM Symposium on Operating Systems Principles. November 1987.

[Mc84A] M. S. McKendry, Clouds: A Fault-Tolerant Distributed Operating System, Distributed Processing
Technical Committee Newsletter, IEEE, 1984, (Also issued as Clouds Technical Memo No:42).

[Mc84B] M. S. McKendry, Fault-Tolerant Scheduling Mechanisms, (Unpublished Technical Report), School
of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, May 1984,
(Draft only).

[Mc85] M. S. McKendry, Ordering Actions for Visibility, Transactions on Software Engineering, IEEE
(11,6) June 1985 (Also released as technical report GIT-ICS-84/05).

[McA83] M. S. McKendry, J. E. Allchin and W. C. Thibault, Architecture for a Global Operating System,
IEEE Infocom, April 1983.

[Mo8l] J. Moss, Nested Transactions: An Approach to Reliable Distributed Computing, Technical Report
MIT/LCSITR-260, MIT Laboratory for Computer Science, 1981.

[MuMo83] E. T. Mueller, J. D. Moore and G. J. Popek, A Nested Transaction Mechanism for LOCUS,
Proceedings of the Ninth Symposium on Operating Systems Principles, ACM SIGOPS, Bretton
Woods, NH, October 1983.

[NoPr85] J. D. Noe, A. B. Proudfoot and C. Pu, Replication in Distributed Systems: The Eden Experience,
Department of Computer Science, University of Washington, Seattle, WA, September 1985 Techn-
ical Report TR-85-08-06.

[No87] Northcutt J. D. Mechanisms for Reliable Distributed Real-Time Operating Systems - The Alpha
Kernel, Perspectives in Computing, v16. Academic Press, 1987.

[Pi86] D. V. Pitts, Storage Management for a Reliable Decentralized Operating System, Ph.D. Diss.,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986,
(Also released as Technical Report GIT-ICS-86/21).

[ScTh86] R. E. Schantz, R. H. Thomas and G. Bono, The Architecture of the Cronus Distributed Operating
System, May 1986, Proceedings of the Sixth International Conference on Distributed Computer
Systems, IEEE Computer Society.

[Sp861 E. H. Spafford, Kernel Structures for a Distributed Operating System, Ph.D. Diss., School of Infor-
mation and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1986, (Also released
as technical report G1T-ICS-86/16).

[SpBu84I A. Z. Spector, J. Butcher, D. S. Daniels and others, Support for Distributed Transactions in the
TABS Prototype, July 1984, Technical Report CMU-CS-84-132, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

[WaPo83] B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed Operating Sys-
tem, Proceedings of the Ninth Symposium on Operating Systems Principles, Bretton Woods, NH,
ACM SIGOPS, pp. 49-70, October 1983. (Available as Operating Systems Review 17, no. 5)

[WeLi83] W. Weihl and B. Liskov, Specification and Implementation of Resilient Atomic Data Types, Sym-
posium on Programming Language Issues in Software Systems, June 1983.

[Wi85] C. T. Wilkes, Preliminary Aeolus Reference Manual, Technical Report GIT-ICS-85/07, School of
Information and Computer Science, Georgia Institute of Technology, Atlanta, GA, 1985. (Last
Revision: 17 March 1986)

[WiLe86] C. T. Wilkes and R. J. LeBlanc, Rationale for the Design of Aeolus: A Systems Programming
Language for an Action/Object System, Proceedings of the IEEE Computer Society 1986 Interna-
tional Conference on Computer Languages. (Also available as Technical Report GIT-ICS-86/012,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA,
1986.)

[Wi87] C.T. Wilkes Programming Methodologies for Resilience and Availability. Ph.D.thesis, Georgia
Tech, 1987, Technical Report GIT-ICS-87/32 School of Information and Computer Science, Geor-
gia Institute of Technology, Atlanta, GA.

r gis Tech aClod Pre*t

I I I IcI 6 I
C-16

16

[Wu74] W. A. Wulf and others, HYDRA: The Kernel of a Multiprocessor Operating System, Communica-
tions of the ACM, (17,6) June 1974.

[WuLe8l] W. A. Wulf, R. Levin and S. P. Harbison, HYDRA/C.mmp, An Experimental Computer System,
McGraw-Hill, Inc., 1981.

Il l I Iet

MIJSSION'
Of

Rawn Air Development Center

c~td scece aqwuisitiocn poto~ams'in su.ppotvt o6
ComcudContte, Comnititon4 'nd Intettigevnce

(C31) actvities. Tehn!caxi and enginetng
, upoLtu, .tina'uea~ o6 competenrce is p'Louvded .to

ESV P'tocgtam 06'ices (P0s) and o-thet ESD etment4
to et om e6ecffive acqui,,ition o6 C3 1 sysftems~.
Thea,7Lasz o6 technicct~ cornpeience. incZude

commni~catons, co~7mand anyd conttoZ, batt&e
*ryiakaemne9-C, innc-atiLo p)L0ce-5stvl, s6utveiZZance

, en~o'ts, .-Lte~Z~ie. data co ectiovi atnd handting,
.s~L ~stt scieces,&, etecttocmagneticz, anvd

rtopczgction, an'd eectkonitc, ma~itainabLZitq,
aLd compaCibitity.

